Comparación de modelos ARIMA, SARIMA y PROPHET en la predicción de internaciones por dengue en Foz do Iguaçu (2008-2024)
Palabras clave:
ARIMA, SARIMA, Series Temporales, Dengue.Citas
SILVA, Sidney T. da; GABRICK, Enrique C.; PROTACHEVICZ, Paulo R.; IAROSZ, Kelly C.; CALDAS, Iberê L.; BATISTA, Antonio M.; KURTHS, Jürgen. When climate variables improve the dengue forecasting: a machine learning approach. The European Physical Journal Special Topics, [S.L.], v. 1, n. 1, p. 1-15, 17 jun. 2024. Springer Science and Business Media LLC. http://dx.doi.org/10.1140/epjs/s11734-024-01201-7. Disponível em: https://link.springer.com/article/10.1140/epjs/s11734-024-01201-7. Acesso em: 10 set. 2024.
MEIRA, Mara Cristina Ripoli; NIHEI, Oscar Kenji; MOSCHINI, Luiz Eduardo; ARCOVERDE, Marcos Augusto Moraes; BRITTO, Andre da Silva; SILVA SOBRINHO, Reinaldo Antônio da; MUÑOZ, Susana Segura. INFLUÊNCIA DO CLIMA NA OCORRÊNCIA DE DENGUE EM UM MUNICÍPIO BRASILEIRO DE TRÍPLICE FRONTEIRA. Cogitare Enfermagem, [S.L.], v. 26, n. 1, p. 1-10, 4 nov. 2021. FapUNIFESP (SciELO). http://dx.doi.org/10.5380/ce.v26i0.76974.
TEMBO, Alfred; ILEMBO, Bahati; LWAHO, Joseph. Forecasting the National Health Insurance Fund Membership Enrolment in Tanzania Using the SARIMA Model. Science Mundi, [S.L.], v. 4, n. 2, p. 29-39, 20 jul. 2024. AJER Publishing. http://dx.doi.org/10.51867/scimundi.4.2.4.
SCHAFFER, Andrea L.; DOBBINS, Timothy A.; PEARSON, Sallie-Anne. Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: a guide for evaluating large-scale health interventions. Bmc Medical Research Methodology, [S.L.], v. 21, n. 1, p. 1-12, 22 mar. 2021. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s12874-021-01235-8.