

01 a 04 de outubro de 2018

Evento: Bolsistas de Iniciação Científica e Iniciação Tecnológica da Unijuí

COMPOSIÇÃO NUTRICIONAL DE FARINHA DE BERINJELA (SOLANUMMELONGENA, L)¹ NUTRITIONAL COMPOSITION OF EGGPLANT FLOUR

Michele Nardes Pinto², Maria Letícia De Almeida Kasctin Dos Santos³, Raul Vicenzi⁴, Eilamaria Libardoni Vieira⁵

- ¹ Estudo vinculado a pesquisa Institucional "Agroindustrialização de hortaliças orgânicas cultivadas na região noroeste do RS", Grupo de Pesquisa Alimentos e Nutrição da UNIJUÍ.
- ² Acadêmica do curso de Nutrição da UNIJUÍ, Bolsista PIBIC/UNIJUI; Email: michelenardes@gmail.com
- ³ Acadêmica do curso de Nutrição da UNIJUÍ, Bolsista PIBIC/UNIJUÍ
- ⁴ Professor Doutor, Departamento de Ciências da vida UNIJUÍ.
- ⁵ Professora orientadora, Mestre em Ciência dos Alimentos, Doutoranda em Desenvolvimento Regional UNIJUÍ, Departamento de Ciências da Vida UNIJUÍ.

INTRODUÇÃO

A berinjela (*Solanummelongena*) é uma planta da família Solanaceae, sendo originária da Índia e introduzida no Brasil no século XVI. A planta contém porte arbustivo, caule semilenhoso, podendo alcançar até um metro de altura, com folhas alternas, ovadas, angulosas e de cor esbranquiçada, sendo pilosa na epiderme inferior. As suas flores violáceas podem apresentar manchas amareladas. Fornece fruto ovóide e oblongo, com epicarpo de coloração vinho escura intensamente brilhante, muito apreciado na culinária (KARAM, et al. 2002).

Segundo a Embrapa (1998),a berinjela é uma boa fonte de sais e minerais e vitaminas, há relatos do uso da mesma, em tratamentos de diabetes, cólera e bronquite, porém entre as propriedades medicinais, destaca- se o controle do colesterol.

A importância da fibra alimentar passou a ser reconhecida e ser recomendada na alimentação devido ao aumento da incidência de algumas doenças crônica como a obesidade, doenças cardiovasculares, hipercolesterolêmica, entre outras, conforme os alimentos naturais foram sendo substituídos pelos processados e refinados (POSSETTI, 2011).

A farinha de berinjela é considerada um alimento com alto teor de fibra, fazendo com que a mesma possa ser utilizada na elaboração de produtos de panificação e demais massas alimentícias, ampliando assim, a oferta de produtos com alto teor de fibra, tanto para pessoas saudáveis quanto para aquelas que possuem alguma patologia (POSSETTI, 2011).

Sendo assim, a berinjela ingerida por via oral é um importante tratamento por dislipidemias, tendo capacidade de reduzir o colesterol séricoe também a ação das gorduras sobre o fígado, segundo

01 a 04 de outubro de 2018

Evento: Bolsistas de Iniciação Científica e Iniciação Tecnológica da Unijuí

estudos.

O presente trabalho teve como objetivo determinar a composição química de berinjela roxa escura, roxa clara e amarelada, tanto na forma in natura quanto na forma de farinhadoada por produtor de hortaliças orgânicas.

METODOLOGIA

Foram utilizadas berinjelas doadas por produtor orgânico. As berinjelas foram classificadas em três grupos de acordo com a coloração: roxa escura, roxa clara e amarela.

As berinjelas foram selecionadas através de análises visuais, escolhendo aquelas que não tenham nenhum tipo de dano mecânico/físico e não estavam atacadas por parasitas e patógenos. Foram lavadas em água clorada (dicloisocianurato de cloro). Posteriormente foi feito fatiamento manual e as fatias foram dispostas em telas e desidratadas em estufacom circulação de ar forçada em temperaturas de 70ºC por 10 horasaté obtenção de produtos com umidade próximaa 20%.Para a obtenção da farinha, os frutos desidratados foram triturados em liquidificador industrial.

As determinações químicas realizadas, tanto nos frutos in natura quando na farinha foram: lipídios totais pelo método de Soxhlet, proteínas totais pelo método de Kjeldahl, com fator de conversão de 6,25, glicídios redutores e não redutores pelo método de Lane-Eynon, umidade pelo método de secagem em estufa a 105°C ; resíduo mineral com incineração em mufla a 550°C (Instituto Adolfo Lutz, 2008); Compostos fenólicos totais, determinados pelo método de Folin-Ciocalteu segundo Singleton e Rossi (1965) e o resultado expresso em miligramas por 100mL de GAE (Ácido Gálico Equivalente) através de uma curva padrão de ácido gálico. A determinação de carotenóides totais foi realizada através do método descrito por Rodriguez-Amaya (2001) e os resultados expressos em μg de β -caroteno g^{-1} de amostra. Aatividade antioxidante foi determinada pelo método colorimétrico com DPPH (2,2-difenil-1-picril-hidrazil) de acordo com Rufino et al. (2007), utilizando curva padrão de TROLOX e os resultados expressos em μg g^{-1} .

RESULTADOS E DISCUSSÕES

A Tabela 1 apresenta a composição centesimal de amostras de berinjela amarela, roxa clara e escura *in natura* e da farinha produzida a partir das amostras desidratadas.

Tabela 1: Composição centesimal de berinjela in natura e na forma de farinha

01 a 04 de outubro de 2018

Evento: Bolsistas de Iniciação Científica e Iniciação Tecnológica da Unijuí

BERINJELA	UMIDADE (%)	PROTEÍNA (%)	GLICÍDEOS REDUTORES (%)	GLICIDIOS NÃO REDUTORES (%)	GORDURA (%)
Amarela in natura	91,40	2,61	1,59	3,05	0,10
Roxa Clara in natura	91,13	3,14	2,13	2,17	0,08
Roxa Escura in natura	93,18	2,02	1,97	3,51	0,19
Farinha Amarela	15, 65	32,85	18,26	37,72	3,21
Farinha Roxa Clara	8,44	22,51	12,14	18,96	3,40
Farinha Roxa Escura	7,70	23,50	18,43	27,08	2,22

A partir dos resultados para umidade observou-se que, entre as amostras *in natura*, a berinjela roxa tem a maior concentração de umidade, com valor de 93,18% enquanto nas farinhas a amostra de berinjela amarela teve a maior concentração de umidade com 15,65%.

A berinjela roxa clara *in natura* apresentou teores superiores de proteína (3,14%) e glicídios redutores (2,13%) em comparação com as de coloração amarela e roxa escura. Em relação a porcentagem de glicídios não redutores (3,51%) e gordura (0,19%) a amostra com maior quantidade foi a de berinjela roxa escura.

Nas farinhas de berinjela observou-se a diminuição da porcentagem de umidade quando comparada com as amostras *in natura*. A farinha de berinjela amarela apresentou maior quantidade de proteína (32,85%) e açúcares não redutores (37,72%) que a farinha de berinjela roxa clara e escura.

A farinha de berinjela roxa escura apresentou maior porcentagem de glicídios redutores (18,43%) e farinha de berinjela roxa clara teor superior de gordura (3,40%).

Estudo realizado por Scorsatto et al (2017) em farinhas de berinjela adquiridas no mercado comercial do Rio de Janeiro verificou a presença de 23,09% de carboidratos; 13,34% de proteínas; 1,85% de lipídeos (gordura).

CONSIDERAÇÕES FINAIS

As farinhas de berinjela apresentaram quantidades superiores dos nutrientes analisados, sendo um produto importante para a produção de alimentos ou consumo na sua forma natural.

PALAVRAS CHAVE

SolanumMelongena; antioxidantes; farinha de berinjela; berinjela- composição.

01 a 04 de outubro de 2018

Evento: Bolsistas de Iniciação Científica e Iniciação Tecnológica da Unijuí

AGRADECIMENTOS:

Os autores agradecem a Secretaria de Desenvolvimento Econômico, Ciência e Tecnologia do RS (SDECT-RS) pelo apoio financeiro ao desenvolvimento do projeto.

REFERÊNCIAS BIBLIOGRÁFICAS

EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. **Cultivo da berinjela** (**Solanummelongena L.**). [Rio de Janeiro]: Embrapa Hortaliças, dez. 1998. 26 p. (Instruções Técnicas, n. 15)

KARAM, L. M. et al. **Composição química da berinjela (***Solanummelongena* **L.)** B.CEPPA, Curitiba, v. 20, n. 2, p. 247-256, jul./dez. 2002.

INSTITUTO ADOLFO LUTZ. **Métodos físico-químicos para análise de alimentos.** 4. ed., Dig. São Paulo, 2008. P. 1002.

LEES, D. H.; FRANCIS, F. J. **Standardizationofpigmentanalyses in cranberries.** Hortscience, Alexandria, v. 7, n. 1, p. 83-84, 1972.

Singleton VL, Rossi JA. Colorimetryof total phenolicswithphosphomolybdicphosphotungsticacidreagents. Am J Enol Viticult 16: 144-158, 1965.

POSSETTI, T.; DUTRA, M. B. L. **Produção, composição centesimal e qualidade microbiológica de farinha de berinjela (***Solanummelongena*, **I.).** ENCICLOPÉDIA BIOSFERA, Centro Científico Conhecer, Goiânia, v.7, n.13, 2011.

SCORSATTO, Mauara et al. Avaliação de Compostos Bioativos, Composição Físico-Química e Atividade Antioxidante In Vitro da Farinha de Berinjela. **InternationalJournalof Cardiovascular Sciences.** 30(3):235-242, 2017.

