

01 a 04 de outubro de 2018

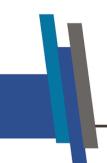
Evento: Bolsistas de Iniciação Científica e Iniciação Tecnológica da Unijuí

SIMULAÇÃO DE TÉCNICAS CIRÚRGICAS EMPREGADAS NA ARTICULAÇÃO DO JOELHO UTILIZANDO MEMBROS PÉLVICOS DE CÃES CONSERVADOS PELA SOLUÇÃO DE THIEL¹ SIMULATION OF SURGICAL TECHNIQUES FOR THE ARTICULATION OF THE KNEES USING DOG'S PELVIC MEMBERS PRESERVED BY THIEL'S SOLUTION

Orestes Moraes Cabeleira², Cristiane Elise Teichmann³, Gabriele Maria Callegaro Serafini⁴

- ¹ Projeto vinculado ao Grupo de Pesquisa em Saúde Animal do Curso de Medicina Veterinária da Universidade Regional do Noroeste do Estado do Rio Grande do Sul (Unijuí).
- ² Discente de Medicina Veterinária e bolsista PIBIC da Universidade Regional do Noroeste do Estado do Rio Grande do Sul.
- ³ Docente mestre em Medicina Veterinária do Departamento de Estudos Agrários da Universidade Regional do Noroeste do Estado do Rio Grande do Sul.
- ⁴ Orientadora. Docente doutora em Medicina Veterinária do Departamento de Estudos Agrários da Universidade Regional do Noroeste do Estado do Rio Grande do Sul.

Introdução


Tradicionalmente, os cursos de Medicina Veterinária sempre adotaram a utilização de animais para o ensino da cirurgia, porém, muitas vezes, as técnicas cirúrgicas praticadas eram em animais saudáveis, os quais não estariam necessitando de tal intervenção. Esta prática resultou em questionamentos éticos e morais da sociedade, alunos e professores, principalmente pela possibilidade de alternativas ao uso dessa metodologia (RODRIGUES et al., 2013).

Nesse sentido, os métodos alternativos vêm a somar nesse aprendizado, pois com eles o aluno pode ter um treinamento repetitivo, em menor tempo e sem estresse. Quando passarem pelo treinamento com animais vivos estarão mais qualificados e seguros (MATERA, 2008).

O Anatomical Institutes, em Zurique, Suiça, utiliza para armazenar os cadáveres usados em treinamento cirúrgico a solução de Thiel. Esta técnica foi desenvolvida por Walter Thiel em 1992 e seu uso resultou em órgãos e tecidos relativamente bem preservados em relação a cor, consistência e transparência, (GROSCURTH et al., 2001). Entretanto, o elevado custo para sua reprodução e grau de complexidade envolvido para reproduzir a técnica, fazem com que esse método não seja amplamente utilizado (BENKHADRA et al., 2011).

Diante disso, o presente trabalho objetivou adaptar essa técnica para ser utilizada apenas em membros pélvicos de cães, servindo para treinamento ortopédico, com menores custos e mais fácil execução.

01 a 04 de outubro de 2018

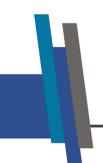
Evento: Bolsistas de Iniciação Científica e Iniciação Tecnológica da Unijuí

Material e Métodos

Foram utilizados cinco cães, *ex vivos*, oriundos do Laboratório de Patologia Veterinária da Unijuí. O projeto foi submetido para a Comissão de Ética no Uso de Animais da mesma universidade e aprovado sob o número de protocolo 018/2016. Os animais foram submetidos à desarticulação coxofemoral bilateral, resultando em 10 membros, somando um total de 10 kg. Posteriormente, foram conservados sob congelamento até o dia prévio ao preparo.

A fórmula para conservação dos membros foi uma adaptação da Solução descrita por Thiel (1992). Tal fórmula é composta por uma solução de injeção e outra de imersão. A solução de injeção foi obtida da mistura das soluções A (5 litros) e B (150 ml). Para elaborar a solução A, adicionou-se 2,1litros de água de torneira, 1,5 litros de etilenoglicol, 1kg de nitrato de amônia, 250g de nitrato de potássio e 150g de ácido bórico. A solução B constou de 135ml de etilenoglicol e 15ml de fenol. Para finalizar a solução de injeção, realizou-se a mistura das soluções A e B, 100ml de formol (37%) e 250g de sulfito de sódio. Por fim, acrescentou-se 10 ml de corante vermelho para dar coloração a peça.

A solução de imersão (40 litros) foi obtida com a mistura de 26 litros de água corrente, 4 litros de etilenoglicol, 0,8 litros de formol, 1,25 litros de ácido bórico, 4 litros de nitrato de amônia,1,5 litros de nitrato de potássio, 2,5 litros de sulfito de sódio.


Após a elaboração da fórmula e descongelamento dos membros, a artéria femoral foi dissecada e canulada. Em seguida, realizou-se lavagem do sistema circulatório com água morna e então foi administrada a solução de injeção, obedecendo ao seguinte critério: o volume total administrado foi relativo a metade do peso do membro, sendo metade desse volume injetado por via intravenosa (IV) e a outra metade por via intramuscular (IM) e subcutânea (SC) em ambos os lados do membro.

Imediatamente após a aplicação da solução injetável, os membros ficaram suspensos por, aproximadamente, 20 minutos para que a solução fosse melhor distribuída entre os tecidos. Posteriormente, foram colocados em uma caixa plástica e cobertos pela solução de imersão, onde permaneceram por 43 dias. Durante esse período, os membros eram trocados de posição dentro da caixa, em dias alternados para garantir a penetração da solução.

Transcorridos os 43 dias, os membros foram retirados da solução de imersão e permaneceram suspensos por um dia para remoção do excesso de líquido. Posteriormente, foram colocados em sacos plásticos, os quais eram trocados semanalmente; e assim permaneceram em temperatura ambiente até o dia dos procedimentos cirúrgicos.

As técnicas cirúrgicas foram realizadas por alunos do curso de Patologia e Clínica Cirúrgica do curso de Medicina Veterinária da Unijuí. A primeira delas (sulcoplastia troclear) foi realizada após 41 dias dos membros estarem condicionados em temperatura ambiente; e a segunda (correção de ruptura de ligamento cruzado com retalho de fáscia lata) após 35 dias da primeira

01 a 04 de outubro de 2018

Evento: Bolsistas de Iniciação Científica e Iniciação Tecnológica da Unijuí

cirurgia.

Em função do número de alunos matriculados, os mesmos foram divididos em seis grupos, sendo assim, dos 10 membros preparados, seis foram escolhidos, aleatoriamente, para a aula. Preconizou-se que todos os alunos participassem dos procedimentos cirúrgicos, manipulando e observando os membros, a fim de ter condições de deixar suas impressões através de um questionário, o qual foi respondido após ambos os procedimentos terem sido executados.

Resultados e discussão

Dezenove questionários foram respondidos e analisados para o presente estudo, os quais corresponderam aos alunos que estavam presentes em ambos os procedimentos. As principais perguntas e respostas serão apresentadas a seguir:


No que se refere ao odor das peças, 73,7% responderam que o odor ruim era mínimo e não causou incômodo. Quanto a aparência externa dos membros, 100% dos estudantes acharam semelhante à de um animal vivo. Quanto a integridade da pele, 57,9% consideraram um pouco aderida ao tecido subjacente, mas sem atrapalhar na execução da técnica. No que se refere a integridade óssea e da cartilagem articular, 57,9% acharam a cor e consistência muito semelhante a um animal vivo. A flexibilidade das articulações ficou dividida entre 52,6% que acharam tão flexíveis como um animal vivo e outros 47,4% que consideraram um pouco menos flexíveis. Por fim, na pergunta mais relevante sobre a percepção do treinamento cirúrgico, 84,2% acharam que os membros permitiram um treinamento satisfatório, lembrando bastante como seria em um animal vivo.

Os cadáveres conservados pela solução de Thiel permitem a recriação realista de várias especialidades cirúrgicas, como as urológicas, tireoidectomias, cricotireoidotomias, cirurgias do fígado, artroplastias, suturas de artérias, reparo de nervos periféricos, flapes, neurocirurgias e implantodontias (OTTONE et al., 2016). Neste trabalho testou-se a cirurgia ortopédica e observou-se que a maioria dos membros manteve a integridade óssea e de cartilagem articular. Entretanto, em alguns a cartilagem encontrava-se friável e destacando-se da superfície óssea. Como essa característica não ocorreu em todos os membros, acredita-se que possa ter sido por menor propagação da solução de injeção nessa área.

Hassan et al. (2015) compararam o reparo cirúrgico de um tendão flexor em cadáveres de suíno conservados pela solução de Thiel e por formol. Observaram que a solução de Thiel permitiu maior flexibilidade dos tecidos fornecendo um treinamento próximo do real. No presente estudo a característica de flexibilidade foi observada no joelho, o que foi fundamental para que ambas as técnicas pudessem ser executadas.

Para um treinamento cirúrgico ser efetivo é necessário que o cadáver conservado mantenha características como cor, consistência dos tecidos e flexibilidade o mais semelhante possível das encontradas em animais vivos (SILVA et al., 2003). Com o método Thiel, o produto

01 a 04 de outubro de 2018

Evento: Bolsistas de Iniciação Científica e Iniciação Tecnológica da Unijuí

resultante é não irritante e quase inodoro, com cor, flexibilidade e plasticidade muito semelhante ao corpo vivo, com ampla mobilidade articular e elasticidade apta ao treinamento de técnicas cirúrgicas e procedimentos clínicos invasivos (OTTONE et al., 2016). Essas características corresponderam as observadas pelos estudantes, visto que a maioria respondeu positivamente as perguntas do questionário.

Ao implantar um método alternativo no ensino da cirurgia, aspectos como o custo devem ser considerados, pois podem variar desde um valor extremamente baixo, como o que se tem com o uso de peças oriundas de frigoríficos para o treinamento da síntese cirúrgica, até valores altíssimos como o obtido com simuladores de realidade virtual para o treinamento de videocirurgia (RODRIGUES et al., 2013). Nesse sentido, salienta-se como ponto negativo da técnica original de Thiel, o elevado custo e a dificuldade em se obter os componentes da fórmula. Entretanto, ao adaptá-la para ser utilizada apenas em membros, como no presente experimento, o custo diminui consideravelmente.

Conclusão

O uso de membros de cães conservados pela solução de Thiel é válido para o treinamento cirúrgico de alunos da graduação. A adaptação da fórmula original empregada nos membros tornou esse método de conservação menos oneroso e mais prático, viabilizando o preparo de várias peças de uma só vez.

Palavras-chave: métodos alternativos, cirurgia, medicina veterinária

Referências

BENKHADRA, M. et al. Is Thiel's embalming method widely known? A world survey about its use. Surgical Radiologic Anatomy (2011) 33:359–363.

HASSAN, S.; EISMA, R.; MALHAS, A.; SOAMES, R. & HARRY, L. Surgical simulation flexor tendon repair using Thiel cadavers: a comparison with formalin embalmed cadavers and porcine models. J. Hand Surg. Eur. Vol., 40(3):246-9, 2015.

MATERA, J.M. O ensino da cirurgia: da teoria à pratica. Anais do I Congresso Brasileiro de Bioetica e Bem-Estar Animal e I Seminário Internacional de Biossegurança e Biotecnologia Animal, Recife p 96-99, 2008.

OTTONE, N. E.; VARGAS, C. A.; FUENTES, R. & DEL SOL, M. Walter Thiel's embalming method. Review of solutions and applications in different fields of biomedical research. *Int. J. Morphol.*, 34(4):1442-1454, 2016.

RODRIGUES, D.F.; MENDES, F.F.; SILVA, L.A.F. Medicina Veterinária, Recife, v.7, n.3, p.47-58, 2013.

01 a 04 de outubro de 2018

Evento: Bolsistas de Iniciação Científica e Iniciação Tecnológica da Unijuí

SILVA, R. M. G. et al. Ensino da técnica cirúrgica utilizando cadáveres. Rev. Educ. Contin. CRMV-SP /Contin. Educ. j. CRMV-Sp, São Paulo, v. 6, n. 1/3. p. 95-102, 2003.

THIEL, W. Die Konservierungganzer Leicheninnatürlichen Farben. Ann Anat 1992;174:185-195.

