# ALTERAÇÕES TECNOLÓGICAS DO MANEJO DE USO DO NITROGÊNIO PELO FRACIONAMENTO EM TRIGO E A PROPOSTA DE APLICAÇÃO DA REGRESSÃO LINEAR MÚLTIPLA VIA COMPONENTES DA ESPIGA NA SIMULAÇÃO DO RENDIMENTO DE GRÃOS¹

Rafael Pretto<sup>2</sup>, Andressa Raquel Cyzeski De Lima<sup>3</sup>, Dionatan Ketzer Krysczun<sup>4</sup>, Guilherme Arnold<sup>5</sup>, Dionatas R. Da Silva<sup>6</sup>, José Antonio Gonzalez Da Silva<sup>7</sup>.

- <sup>1</sup> Resultados do projeto de pesquisa do grupo em sistemas técnicos de produção agropecuária.
- <sup>2</sup> Aluno do Curso de Graduação em Agronomia da UNIJUÍ, bolsista PROBITI/FAPERGS, p.rafapreto@gmail.com;
- <sup>3</sup> Aluno do Curso de Graduação em Agronomia da UNIJUÍ, bolsista PROBIC/FAPERGS, andressaraqueldelima@gmail.com;
- <sup>4</sup> Aluno do Curso de Graduação em Agronomia da UNIJUI, bolsista PIBITI/CNPQ, diona1994@hotmail.com;
- <sup>5</sup> Aluno do Curso de Graduação em Agronomia da UNIJUÍ, bolsista PIBIC/UNIJUÍ, guilherme.arnold@yahoo.com.br;
- <sup>6</sup> Aluno do Curso de Graduação em Agronomia da UNIJUÍ, bolsista PIBIC/CNPQ, dionatas\_rodrigues16@hotmail.com;
- <sup>7</sup> Professor Doutor do Departamento de Estudos Agrários, Orientador, jagsfaem@yahoo.com.br;

### Introdução

O trigo (Triticum aestivum L.) é o segundo cereal mais produzido no mundo, (Ministério da Agricultura - MAPA, 2015), cultivado em larga escala e em diversas regiões. É utilizado de diversas formas, desde a fabricação de farinha para a panificação, no farelo na alimentação animal, além do gérmen que é aproveitado na indústria farmacêutica para a fabricação de óleos e dietéticos (PINNOW et al., 2013). O rendimento de grãos é o produto final de uma série de interações que ocorrem no agrossistema de trigo. Assim, o máximo potencial produtivo da cultura envolve além do potencial genético, outros fatores, como o clima, solo, água, nutrientes e a interatividade com pragas e doenças. O que se pode afirmar é que o potencial genético de uma cultivar será expresso somente quando existirem condições edafoclimáticas e de manejo do agrossistema adequadas (HOEFT, 2003; SIMILI et al., 2008; BOSCHINI et al., 2011).

Entre as técnicas de manejo, a adubação nitrogenada é uma das mais importantes em razão do Nitrogênio (N) ser um dos nutrientes absorvidos em maior quantidade pela cultura do trigo, com respostas positivas do rendimento, considerando que afeta o crescimento e o desenvolvimento da planta, influenciando o seu potencial produtivo (SILVA et al., 2015). O nitrogênio é o nutriente que tem maior interferência na composição da planta de trigo, sendo o mais exigido durante o seu desenvolvimento. Assim, a produtividade está intensamente ligada ao manejo da adubação nitrogenada seja por meio de diferentes doses, e quanto a forma de aplicação, seja dose cheia ou fracionamento (THEAGO, 2014). Na literatura há uma discordância de que o fracionamento da dose de N não seja eficiente na melhoria do rendimento. Porem tem-se que o este fracionamento





aplicado em momentos específicos do desenvolvimento da cultura mostra incrementando no número de grãos por espiga e o número de espigas por área, sendo que estes componentes estão diretamente ligados ao rendimento da cultura (SILVA, et al., 2015). Destaca-se que grande parte dos fatores de clima, de solo e o potencial genético da cultura esteja expresso sobre os componentes ligados a espiga, determinando os reflexos da diferentes interações de manejo e clima. Desta forma, a possibilidade de emprego destes componentes num modelo matemático de previsibilidade, pode qualificar as recomendações frente as tecnologias ligadas ao manejo do nitrogênio. O uso da regressão linear múltipla vem sendo empregado na verificação de redução de produtividade pela brusone na cultura do arroz (Prabhu et al.,2003) e foi adequado para representar o período de duração(dias) entre a emergência e a floração da cultura da soja (Rodrigues et al. 2001). Além disto, Costa (2013) mostrou a possibilidade de uso deste modelo em representar a estimativa de produtividade de grãos em trigo. Deste modo o objetivo do presente trabalho visa qualificar a possibilidade alterações tecnológicas do manejo de uso do nitrogênio pelo fracionamento em trigo e a proposta de aplicação de regressão linear múltipla via componentes da espiga na simulação da produtividade de grãos nos sistemas de cultivo.

# Metodologia

O presente trabalho foi desenvolvido na área experimental do Instituto Regional de Desenvolvimento Rural (IRDeR) pertencente ao Departamento de Estudos Agrário (DEAg) da UNIJUÍ. Quanto ao volume de pluviosidade, a estação meteorológica do IRDeR registra normalmente volumes próximos a 1600 mm anuais, com ocorrência de maiores precipitações no inverno. O experimento foi conduzido em delineamento de blocos ao acaso com quatro repetições e parcelas de 5m² num esquema fatorial 3x4 para condições de adubação nitrogenada com aplicação total ou fracionada, (V3, V3/V6 e V3/R1) e doses de adubação nitrogenada (0, 30, 60 e 120 kg de N ha-1) nos sistemas de sucessão de rápida e lenta liberação de N-residual, nos anos agrícolas de 2011 e 2012, utilizando a cultivar Guamirim obedecendo as recomendações técnicas para a cultura. Os dados obtidos foram submetidos a análise de regressão linear em cada condição de dose cheia e fracionamento do nitrogênio, empregando no modelo o incremento total de uso das doses. Além disto, o uso de regressão linear múltipla, em cada condição de fracionamento de adubação e sistema de sucessão, com a inclusão das variáveis mais adequadas ao modelo via técnica de Stepwise na seleção probabilística. O modelo de regressão linear múltipla aplica-se nos casos em que y é uma função linear de duas variáveis ou mais. Neste caso, deseja-se encontrar os valores b 0,b 1,b 2,b 3,...,b n, tais que a relação entre eles seja aproximada por uma expressão do tipo y=b\_0+b\_1 x\_1+b\_2 x\_2+b\_3 x\_3+⋯+b\_n x\_n

Na forma matricial

FIGURA 1

De maneira análoga ao ajuste linear simples, a solução b\_i que mínima os erros é dada pela solução do sistema:

FIGURA 2



Os resultados foram obtidos com o auxílio do programa computacional Genes.

#### Resultados e Discussão

Na tabela 1, considerando o efeito cumulativo de dois anos de cultivo (2011 e 2012) no sistema soja/trigo e milho/trigo, as doses de 30, 60 e 120 kg ha-1 de N indicaram significância de quadrado médio e tendência linear. A fora isto, os parâmetros das equações ajustadas confirmaram o coeficiente angular (bix) significativo, dando subsídio da linearidade positiva destas equações. Nestas condições, nos dois sistemas a expectativa de rendimento proposto foi na obtenção de 3000 kg de RG ha-1, Portanto, no sistema soja/trigo, o melhor resultado foi obtida na aplicação cheia em V3, proporcionando que a cada 1 kg de N adicionado por hectare renderia aproximadamente 65 kg de RG, proporciona um rendimento estimado de 4059 kg ha-1. No sistema milho/trigo, foi constatado nesta condição que o fracionamento no estádio V3/V6 pode representar benefícios mais expressivos no RG com, uma estimativa de 4693 e 4739 kg ha-1 de RGE. Importante comentar que os valores estimados foram muito superiores aqueles esperados segundo as indicações técnicas da cultura do trigo (RCBPT, 2011).

Na tabela 2 está apresentada a regressão via Stepwise e as variáveis que são decisivamente importantes para elaboração do modelo de regressão múltipla. Assim, no sistema soja/trigo no estádio de aplicação V3 o NGE, o ICE e N foram as classificadas. No estádio V3/V6 a ME e o N indicaram a maior contribuição. No V3/R1 tanto o CE e N são as variáveis independentes mais promissoras. Já no sistema milho/trigo, no estádio V3, o modelo Stepwise qualifica a MGE, CE e N como os mais efetivos. E no V3/V6 o ICE e N foram os destacados. Já no V3/R1 apenas o N mostra elevada contribuição para o desenvolvimento da equação. Contudo, em todas as condições avaliadas, independente do sistema de sucessão, o N foi o componente determinante a ser incluído em todas as equações múltiplas a serem propostas, confirmando tal importância do elemento químico nos processos ligados ao desenvolvimento da planta de trigo.

Na tabela 3 estão apresentadas as equações múltiplas envolvendo todas as variáveis potenciais classificadas pela técnica Stepwise. Ressalta-se, que os valores utilizados para obtenção do rendimento de grãos estimado (RGE) foi obtido das médias observadas contidas na tabela 1. Portanto, no sistema soja/trigo o RGE obtido nos estádios V3, V3/V6 e V3/R1 foram 3122, 3086 e 2887 kg ha-1, respectivamente. Em todas estas condições houve uma elevada similaridade com os observados nesta condição de cultivo. Destaca-se que em todas as condições de estimativa os valores obtidos foram fixados dentro do intervalo de confiança (IC) previsto. Já no sistema milho/trigo as equações obtidas para estimativa do RG também expressaram adequado ajuste, próximos aos valores observados. Portanto, tanto no V3, V3/V6 e V3/R1 o RGE foi de 3016, 2999, 2845 kg ha-1, respectivamente.

## Conclusão

A tecnologia de uso do nitrogênio pela dose cheia permite resultados mais efetivos sobre o aproveitamento de uso do nutriente à elaboração de grãos. O uso de fracionamento em condições mais restritivas pela liberação N-residual parece estar mais fundamentado. A possibilidade de



previsão de colheitas incluindo no modelo situações de manejo que são constantemente observadas nas lavouras de trigo representa a possibilidade de qualificar a estimativa de produtividade. Neste contexto, o emprego de regressão linear múltipla se mostra eficiente, principalmente quando inserido no modelo a dose de fornecimento de N e ao menos um ou mais caracteres da inflorescência para qualificar tal estimativa.

Palavras-Chave:

Avena sativa L., adubação nitrogenada, tecnologia, eficiência;

#### Referências:

BOSCHINI, Ana P. M. et al. Aspectos quantitativos e qualitativos do grão de trigo influenciados por nitrogênio e lâminas de água. Revista Brasileira de Engenharia Agrícola e Ambiental. v.15, n.5, p. 450-457, 2011.

CALDEIRA, M. T. M.; LIMA, A. L. V.; SEKI, A. H.; RUMJANEK, D. F. Diversidade de trigos, tipificação de farinhas e genotipagem. Biotecnologia e Desenvolvimento, São Paulo, p. 44-48, 2003.

COSTA, J. S. P. Modelagem matemática no comportamento do trigo sobre o escalonamento e doses de nitrogênio nos sistemas de cultivo. 2013.

CRUZ, C. D. Programa Genes: versão Windows; aplicativo computacional em genética e estatística. Viçosa: UFV, 2001.

HOEFT, R. G. Desafios para obtenção de altas produtividades de milho e soja nos EUA. Informações Agronômicas. v. 104, n. 1, p. 1-4, 2003.

MAPA–Ministério da Agricultura e Pecuária. Culturas: Trigo. <a href="http://www.agricultura.gov.br/vegetal/culturas/trigo">http://www.agricultura.gov.br/vegetal/culturas/trigo</a> Acesso em: jun. 2015.

PINNOW, C.; BENIN, G.; VIOLA, R.; SILVA, C. L. S.; GUTKOSKI, L. C.; CASSOL, L. C. Qualidade industrial do trigo em resposta à adubação verde e doses de nitrogênio. Bragantia, v.72, p.20-28, 2013.

PRABHU, A. S.; ARAUJO, L. G.; FAUSTINA, C.; BERNI, R. F.. Estimativa de danos causados pela brusone na produtividade de arroz de terras altas. Pesquisa Agropecuária Brasileira, Brasília, v.38, n.9, p. 1045-1051, 2003.

Reunião da comissão brasileira de pesquisa de trigo e triticale (RCBPT). Informações técnicas para trigo e triticale safra 2011. Cascavel: Embrapa Trigo, 2011.

RODRIGUES, O., et al. Resposta quantitativa do florescimento da soja à temperatura e ao fotoperíodo. Pesquisa Agropecuária Brasileira, Brasília, v.36, n.3, p. 431-437, 2001.

SILVA, J. A. G., et al . A expressão dos componentes de produtividade do trigo pela classe tecnológica e aproveitamento do nitrogênio. Rev. bras. eng. agríc. ambient., Campina Grande, v. 19, n. 1, p. 27-33, Jan. 2015.

SIMILI, F. F.; REIS, R. A.; FURLAN, B. N.; PAZ, C. C. P.; LIMA, M. L. P.; BELLINGIERI, P. A. Resposta do híbrido de sorgo-sudão à adubação nitrogenada e potássica: composição química e digestibilidade in vitro da matéria orgânica. Ciência e Agrotecnologia, Lavras. v. 32, p. 474-480, 2008.







Modalidade do trabalho: Relatório técnico-científico Evento: V Seminário de Inovação e Tecnologia

THEAGO, Eduardo Quimello et al . Doses, fontes e épocas de aplicação de nitrogênio influenciando teores de clorofila e produtividade do trigo. Rev. Bras. Ciênc. Solo, Viçosa, v. 38, n. 6, p. 1826-1835, dic. 2014.

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{21} & \dots & x_{m1} \\ 1 & x_{12} & x_{22} & \dots & x_{m2} \\ 1 & x_{13} & x_{23} & \dots & x_{m3} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{1n} & x_{2n} & \dots & x_{mn} \end{bmatrix} \cdot \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$\begin{bmatrix} n & \sum x_{1i} & \sum x_{2i} & \dots & \sum x_{mi} \\ \sum x_{1i} & \sum x_{2i} & \sum x_{3i} & \dots & \sum x_{i}^{n+1} \\ \sum x_{2i} & \sum x_{3i} & \sum x_{4i} & \dots & \sum x_{i}^{n+2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum x_{mi} & \sum x_{1i} x_{mi} & \sum x_{2i} x_{mi} & \dots & \sum x_{mi}^{2} \end{bmatrix} \begin{bmatrix} b_{0} \\ b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix} = \begin{bmatrix} \sum y_{i} \\ \sum x_{i} y_{i} \\ \sum x_{2i} y_{i} \\ \vdots \\ \sum x_{mi} y_{i} \end{bmatrix}$$







Modalidade do trabalho: Relatório técnico-científico Evento: V Seminário de Inovação e Tecnologia

Tabela 1. Resumo da análise de variância de equação de regressão e seus parâmetros para o rendimento (RG) nas épocas de adubação nitrogenada V<sub>3</sub>, V<sub>3</sub>/V<sub>6</sub>, V<sub>3</sub>/R<sub>1</sub>, com o valor rendimento de grãos estimado. UNIJUI, 2015.

| Condição                       | Quadrado<br>Médio (RG) | Equação RG=b <sub>0</sub> +b <sub>1</sub> xjl | P (b <sub>i</sub> ) | R²<br>% | RGE (kg ha-1) |
|--------------------------------|------------------------|-----------------------------------------------|---------------------|---------|---------------|
|                                | Sarah White 18         | Sistema soja/trigo (2011 + 20                 | 12)                 | 74.03   |               |
| V <sub>3</sub>                 | 31248465*              | 107,45+65,87x                                 |                     | 99      | 4059          |
| V <sub>3</sub> /V <sub>6</sub> | 26335653*              | 243,37+60,47x                                 |                     | 94      | 3871          |
| V <sub>3</sub> /R <sub>1</sub> | 19509381*              | 237,12+52,05x                                 | •                   | 93      | 3360          |
|                                |                        | Sistema milho/trigo (2011 + 20                | 012)                |         |               |
| V <sub>3</sub>                 | 19015944*              | 67,91+51,39x                                  | *                   | 99      | 4693          |
| V <sub>3</sub> /V <sub>6</sub> | 18935858*              | 124,75+51,28x                                 | •                   | 98      | 4739          |
| V <sub>3</sub> /R <sub>1</sub> | 11448112*              | 189,33+39,87x                                 | *                   | 93      | 3777          |

 $V_3$  = colar formado na 3ª folha do colmo principal,  $V_3/V_6$ = Colar formado na 6ª folha do colmo principal e  $V_3/R_1$ = Diferenciação da espiga; RG= Rendimento de Grãos; P (b<sub>i</sub>)= parametro que mede a significância da reta; R²= coeficiente de determinação; RG<sub>E</sub>= Rendimento de Grãos estimado para dose de adubação nitrogenada de 60 kg N ha⁻¹ no sistema soja/trigo e 90 kg N ha⁻¹ no sistema milho/trigo, considerando uma expectativa de rendimento de 3 t ha⁻¹.







Modalidade do trabalho: Relatório técnico-científico Evento: V Seminário de Inovação e Tecnologia

Tabela 2. Resultado para identificação de variáveis potenciais para o modelo de regressão múltipla via <a href="Stepwise">Stepwise</a>. UNIJUI, 2015.

| Fonte de variação      | Quadrado Médio/Stepwise |                  |           |  |  |  |
|------------------------|-------------------------|------------------|-----------|--|--|--|
| Fonte de valiação      | V <sub>2</sub>          | V₃/Ve            | V₃/R₁     |  |  |  |
|                        | Sistema soja/trig       | o (2011 + 2012)  |           |  |  |  |
| Regressão              | 6508728*                | 7030946*         | 4940923*  |  |  |  |
| ME                     | 25                      | 10848931*        | DE        |  |  |  |
| MGE                    | O.S.                    | 0.5.             | DE        |  |  |  |
| NGE                    | 444425*                 | D.S.             | D.S.      |  |  |  |
| CE                     | 0.5                     | O.S.             | 4134337*  |  |  |  |
| ICE                    | 14456663*               | 0.5.             | DE        |  |  |  |
| N                      | 4625097*                | 3212961*         | 5747508*  |  |  |  |
| Erro                   | 99659                   | 145805           | 192093    |  |  |  |
|                        | Sistema milho/tri       | o 72011 + 2012)  |           |  |  |  |
| Regressão              | 2597993*                | 4329377*         | 7547405*  |  |  |  |
| ME                     | D.S.                    | D.S.             | D.S.      |  |  |  |
| MGE                    | 732107*                 | D.S.             | D.S.      |  |  |  |
| NGE                    | O.S.                    | D.S.             | D.S.      |  |  |  |
| CE                     | 2495537*                | O.S.             | D.S.      |  |  |  |
| ICE                    | D.S.                    | 3298684*         | D.S.      |  |  |  |
| N                      | 4566335*                | 5360070*         | 7547405*  |  |  |  |
| Erro                   | 159756                  | 100438           | 65295     |  |  |  |
|                        | Médias observadas       |                  |           |  |  |  |
| Variáveis selecionadas | V <sub>2</sub>          | V₃/Ve            | V₃/R₁     |  |  |  |
| 16.76                  | Sistema soja/trig       | jo (2011 + 2012) | C 3001 TV |  |  |  |
| ME                     | 98 108<br>98 108        | 1,39             | - 5       |  |  |  |
| NGE                    | 27,88                   | 20               |           |  |  |  |
| CE                     |                         | •                | 7,15      |  |  |  |
| ICE                    | 0,72                    |                  | 60        |  |  |  |
| N                      |                         | 60 60            |           |  |  |  |
|                        |                         | 90 (2011 + 2012) |           |  |  |  |
| MGE                    | 0,97                    | 4                |           |  |  |  |
| CE                     | 6,98                    |                  |           |  |  |  |
| ICE                    | 12                      | 0,72             | 12        |  |  |  |
| N                      | 90                      | 90               | 90        |  |  |  |

V₃ = colar formado na 3² folha do colmo principal, V₂/V₀= Colar formado na 6² folha do colmo principal e V₃/R₀= Diferenciação da espiga; RG= rendimento de grãos; ME= massa da espiga; MGE= massa de grãos por espiga; NGE= número de grãos por espiga; CE= comprimento da espiga; ICE= índice de colheita da espiga; N= N; \* = Significativo a 5% de probabilidade de erro, respectivamente, pelo teste F; n₅= Não significativo pelo teste F a 5% de probabilidade de erro.







Modalidade do trabalho: Relatório técnico-científico Evento: V Seminário de Inovação e Tecnologia

Tabela 3. Equação de Regressão Múltipla para estimativa do rendimento de grãos em trigo, com o rendimento de grãos observado. UNIJUI, 2013.

| Condição                          | Equação                                                                | R       | RG   |      | IC        |
|-----------------------------------|------------------------------------------------------------------------|---------|------|------|-----------|
| RG/Época                          | $RG=f(x_i)$                                                            | [7800*] | E    | 0    | ) LI-LS   |
|                                   | Sistema soja/trigo                                                     |         |      |      |           |
| RG V <sub>3</sub>                 | RG=-4547+70,99 <sub>NGE</sub> +6947 <sub>ICE</sub> +11,48 <sub>N</sub> | 0,90    | 3122 | 3277 | 2760-3794 |
| RG V <sub>3</sub> /V <sub>6</sub> | RG=-1782 +3097,92 <sub>ME</sub> +9,38 <sub>N</sub>                     | 0,84    | 3086 | 3226 | 2764-3687 |
| RG V <sub>3</sub> /R <sub>1</sub> | RG=-6457+1156cE+17,98N                                                 | 0,71    | 2887 | 3065 | 2649-3481 |
|                                   | Sistema milho/trigo                                                    |         |      |      |           |
| RG V <sub>3</sub>                 | $RG = 6212 + 2007, 84_{MGE} - 904, 38_{CE} + 12, 99_{N}$               | 0,70    | 3016 | 2752 | 2382-3121 |
| RG V <sub>3</sub> /V <sub>6</sub> | RG=-4618+9134 <sub>ICE</sub> +11,57 <sub>N</sub>                       | 0,80    | 2999 | 2762 | 2396-3128 |
| RG V <sub>3</sub> /R <sub>1</sub> | RG=1497+14.98 <sub>N</sub>                                             | 0.84    | 2845 | 2546 | 2212-2880 |

V<sub>3</sub> = colar formado na 3º folha do colmo principal, V<sub>3</sub>/V<sub>6</sub>= Colar formado na 6º folha do colmo principal e V<sub>3</sub>/R<sub>1</sub>= Diferenciação da espiga; RGE= rendimento de grãos estimado; RGO= rendimento de grãos observado; ME= massa da espiga; MGE= massa de grãos por espiga; NGE= número de grãos por espiga; CE= comprimento da espiga; ICE= indice de colheita da espiga; N= nitrogênio; IC = intervalo de confiança.

