

XXXIII Seminário de Iniciação Científica
XXX Jornada de Pesquisa
XXVI Jornada de Extensão
XV Seminário de Inovação e Tecnologia
XI Mostra de Iniciação Científica Júnior
III Seminário Acadêmico da Graduação UNIJUÍ

Evento: XV Seminário de Inovação e Tecnologia •

ANÁLISE COMPARATIVA DE MATERIAIS PARA TUBULAÇÕES HIDRÁULICAS: DURABILIDADE E SUSTENTABILIDADE¹

William Giovani Haacke², Lia Geovana Sala³, Giuliano Daronco⁴, Nicoli Eduarda Gross⁵, Gabriele de Souza Petry⁶

- ¹ Programa de Educação Tutorial, desenvolvido pela Unijuí e financiado pelo Ministério da Educação.
- ² Bolsista do Programa de Educação Tutorial (PET), estudante do curso de graduação em Engenharia Civil da UNIJUÍ.
- ³ Tutora do Programa de Educação Tutorial (PET), professora do curso de Engenharia Civil da UNIJUÍ.
- ⁴ Professor do curso de Engenharia Civil da UNIJUÍ
- ⁵ Bolsista do Programa de Educação Tutorial (PET), estudante do curso de graduação em Engenharia Civil da UNIJUÍ.
- ⁶ Estudante do curso de graduação em Engenharia Civil da UNIJUÍ
- ⁷Grupo de pesquisa: Grupo Novos Materiais e Tecnologias para Construção e Infraestrutura GMATEC

1. INTRODUÇÃO

Na construção civil, é crescente a procura pelo desenvolvimento de processos eficazes e eficientes, sendo inovações tecnológicas que fornecem a melhoria de processos, com menores prazos e custos (POSSAMAI; Juliana, 2012). Os sistemas de abastecimento de água são infraestruturas necessárias para o abastecimento de populações em quantidade e qualidade adequadas para o consumo humano (SARZEDAS; Guaraci, 2009).

Em meados dos anos de 1990, chegaram ao mercado o Polipropileno Copolímero Random (PPR) e o Polietileno Reticulado (PEX) para a condução tanto de água fria como de água quente em instalações prediais. Atualmente, o mercado oferece os tubos em PEX multicamada, que apresentam forma estável e barreira de oxigênio graças à presença do alumínio (Lima, 2022).

No Brasil, o PVC (policloreto de vinila) tem sido amplamente utilizado nas instalações prediais de água fria, devido aos benefícios que oferece. No entanto, o PEX (polietileno reticulado) tem ganhado popularidade, pois é uma opção flexível que elimina a necessidade de conexões intermediárias (BRANDÃO, 2010, apud ANSELMO, 2023).

Lacopo et al, (2023), apud Anselmo (2023), estudaram a utilização do PEX no sistema hidráulico em paredes de concreto. Concluíram que, apesar de ser mais caro em relação ao PVC e CPVC, o PEX é recomendado para este tipo de obra, visto ter melhor isolamento

XXXIII Seminário de Iniciação Científica
XXX Jornada de Pesquisa
XXVI Jornada de Extensão
XV Seminário de Inovação e Tecnologia
XI Mostra de Iniciação Científica Júnior
III Seminário Acadêmico da Graduação UNIJUÍ

térmico, não possuir conexões intermediárias, a execução ser rápida e pode ser utilizado para água quente e fria.

Nesse contexto, visto os diversos materiais apresentados, o presente artigo tem como objetivo analisar e comparar os produtos pesquisados, com foco na durabilidade, desempenho, além disso o estudo alinha-se com as ODS 9 (indústria, inovação e infraestrutura).

2. METODOLOGIA

A metodologia adotada é de natureza descritiva, predominantemente qualitativa, baseada na análise de artigos científicos, TCCs e informações de fabricantes. Esse método permitiu uma exploração crítica das características de durabilidade e sustentabilidade dos diferentes materiais utilizados em tubulações hidráulicas. Segundo Gil (1999), a pesquisa descritiva tem como objetivo descrever características de um fenômeno ou estabelecer relações entre variáveis, utilizando técnicas padronizadas de dados.

3. RESULTADOS E DISCUSSÃO

- **3.1 PVC** (**Policloreto de vinila**): o PVC apresenta excelente relação custo-benefício, confrontado-se com materiais concorrentes como a madeira, metais e cerâmicas, além de apresentar vantagens facilmente perceptíveis em quesitos fundamentais como resistência ao intemperismo, isolamento térmico e acústico, facilidade de instalação, baixa necessidade de manutenção e excelente acabamento e estética (ZAIONCZ, Soraia, 2004).
- **3.2 PPR (Polipropileno):** O Polipropileno Copolímero Random (PPR) é um material derivado do petróleo, caracterizado por sua alta resistência a temperaturas elevadas e pressões, além de oferecer maior durabilidade (CATÁLOGO PREDIAL AMANCO, 2011; POSSAMAI; JULIANA, 2012). Entre suas vantagens, destacam-se o bom isolamento acústico, menor ruído nas instalações hidráulicas, reciclabilidade e segurança. No entanto, sua instalação exige mão de obra especializada e equipamentos específicos. A união dos componentes é feita por fusão térmica a 260 °C, criando uma conexão molecular entre tubos e conexões, o que reduz significativamente o risco de vazamentos (POSSAMAI; JULIANA, 2012).

XXXIII Seminário de Iniciação Científica
XXX Jornada de Pesquisa
XXVI Jornada de Extensão
XV Seminário de Inovação e Tecnologia
XI Mostra de Iniciação Científica Júnior
III Seminário Acadêmico da Graduação UNIJUÍ

- **3.4 Tubos de Cobre:** Os tubos de cobre utilizados em edificações são usualmente sem costura, rígidos, fabricados por extrusão e calibrados por trefilação para ajuste aos padrões comerciais. A produção é disciplinada pela Norma Brasileira da ABNT NBR 13.206 e são produzidas em barras de 2,5 ou 5,0 m. O teor mínimo de pureza do material tem que ser de 99,9% de cobre. Esses tubos têm características de boa resistência química e à corrosão, superfície que não permite fácil incrustação e tem boa resistência mecânica. Sua vida útil é longa e são recicláveis (XVIII COBREAP, 2015).
- **3. 5 Pex:** A tubulação em PEX apresenta expectativa de vida útil superior a 50 anos, com garantia do fabricante, desde que instalada por profissionais treinados. Entre suas principais vantagens estão a agilidade na instalação, a praticidade do sistema e a possibilidade de redução nos custos da obra em comparação com materiais como PVC e CPVC. Além disso, os tubos PEX são significativamente mais leves, sendo cerca de 7 vezes mais leves que os de cobre e 13 vezes mais leves que os de aço, o que facilita o manuseio e o transporte na obra (ARAÚJO; FERREIRA, 2022).
- **3.6 Resultados:** Com base nas pesquisas bibliográficas realizadas, pode-se ter uma prévia das vantagens e desvantagens, do custo benefício e do tempo de vida útil estimado de cada material mencionado no decorrer do trabalho. Para simplificação e contextualização de tudo o que foi mencionado, verifica-se o quadro a seguir:

Material	PVC	PPR	COBRE	PEX
VANTAGENS:	Impermeável, resistente, leve, reciclável.	Resistente a altas temperaturas, durável, isolamento acústico.	Maior durabilidade e resistente à corrosão.	Flexível, durável, de fácil instalação e resistente à corrosão.
DESVANTAGE NS:	Quebrável e não tolera altas temperaturas	Requer mão de obra especializada, dificuldade de reparo.	Pesados, incompatível com alguns fluidos, expansão térmica.	Desconhecido por parte dos profissionais, as instalações passam por baixo do chão.

XXXIII Seminário de Iniciação Científica
XXX Jornada de Pesquisa
XXVI Jornada de Extensão
XV Seminário de Inovação e Tecnologia
XI Mostra de Iniciação Científica Júnior
III Seminário Acadêmico da Graduação UNIJUÍ

VIDA ÚTIL MÉDIA:	60 anos	45 anos	80 anos	50 anos
PREÇO:	R\$6,90 o metro (20mm): Acessível economicame nte	R\$6,19 o metro (20mm): Acessível economicament e.	R\$45,60 o metro (15mm): Relativamente caro comparado aos outros materiais.	R\$13,50 o metro (20mm multicamada) : Caro comparado aos outros materiais.

4. CONSIDERAÇÕES FINAIS:

As pesquisas realizadas apresentaram diversos materiais para tubulações hidráulicas com características distintas.

Os materiais, ao analisar suas vantagens e desvantagens o PEX apresenta o melhor desempenho entre todos os materiais, porém é pouco conhecido entre os profissionais atualmente.

Como também, o cobre e o PVC apresentam diversas desvantagens que tornam os materiais situacionais. Ademais, o PPR retrata o melhor equilíbrio de vantagens entre todos os materiais citados, porém ele necessita de mão de obra especializada. Além disso, foi investigado o tempo de vida útil médio dos materiais e o preço médio atual.

Apenas o PPR não apresentou um tempo de vida útil superior a 50 anos. Em relação aos preços médios, o cobre foi o único material que apresentou valores inviáveis. Dessa forma, foi possível realizar a análise de distintos materiais para tubulações hidráulicas e concluir que cada material apresenta diversas características e sua seleção depende do projeto a ser executado.

5.REFERÊNCIAS BIBLIOGRÁFICAS

SOUZA, Andréia Aparecida de. Análise das propriedades mecânicas de compósitos cimentícios com adição de materiais alternativos. 2009. Dissertação (Mestrado em Engenharia Civil) — Universidade de São Paulo, São Paulo, 2009. Disponível em: https://www.teses.usp.br/teses/disponiveis/3/3147/tde-20072009-144606/publico/dissertacao_rev.pdf. Acesso em: 20 set. 2024.

XXXIII Seminário de Iniciação Científica XXX Jornada de Pesquisa XXVI Jornada de Extensão XV Seminário de Inovação e Tecnologia XI Mostra de Iniciação Científica Júnior III Seminário Acadêmico da Graduação UNIJUÍ

BRASKEM. Tecnologia do PVC. 2° ed. Revista Braskem, 2006. Disponível em: https://www.braskem.com/Portal/Principal/Arquivos/Download/Upload/Tecnologia%20do%2 0PVC%202a%20edi%C3%A7%C3%A3o 22.pdf. Acesso em: 21 set. 2024.

BRANDÃO, Cristiano. Estudo do comportamento mecânico de compósitos cimentícios. 2009. Dissertação (Mestrado em Engenharia Civil) — Universidade Federal do Paraná, Curitiba, 2009. Disponível em: https://acervodigital.ufpr.br/handle/1884/3513. Acesso em: 21 set. 2024.

POSSAMAI, Juliana Zanellato. ESTUDO COMPARATIVO ENTRE DIFERENTES TIPOS DE TUBULAÇÕES NAS REDES DE INSTALAÇÕES HIDRÁULICAS PREDIAIS – Universidade do Extremo Sul Catarinense, Santa Catarina, 2012. Disponível em: . Acesso em: 26 set. 2024. SILVA, Ana Paula. PVC NA CONSTRUÇÃO - Análise de algumas aplicações. 2015. Dissertação (Mestrado em Engenharia Civil) – Universidade do Porto, Porto, 2015. Disponível em:

https://repositorio-aberto.up.pt/bitstream/10216/80105/2/36355.pdf. Acesso em: 22 set. 2024.

ARAÚJO, Flávio Henrique de Sousa; FERREIRA, Rodrigo Meira Lima Branco. OS TUBOS PEX PARA AS INSTALAÇÕES HIDRÁULICAS NO BRASIL, 2022. Disponível em:

https://repositorio.ufpe.br/bitstream/123456789/48871/1/FL%c3%81VIO%20HENRIQUE% 20DE%20SOUSA%20ARA%c3%9aJO%20e%20RODRIGO%20MEIRA%20LIMA%20BR ANCO%20FERREIRA.pdf. Acesso em: 26 set. 2024.

LIMA, Marcelo Rossi de Camargo. Corrosão em Tubulações em Cobre – Pite (Pitting). Disponível em: http://www.mrcl.com.br/resumos/R0155-2.pdf. Acesso em: 28 set. 2024.

LAKATOS, Maria de Andrade; MARCONI, Marina de Andrade. Como elaborar projetos de pesquisa. Cap. 3. São Paulo: Atlas, 2003. Disponível em: https://dlwqtxts1xzle7.cloudfront.net/35790526/Cap_3_Como_Elaborar-libre.pdf. Acesso em: 27 jul. 2025.