



# POTENCIALIDADE DO ÓLEO ESSENCIAL DE CAPIM LIMÃO (Cymbopogon flexuosus) NA AGRICULTURA<sup>1</sup>

Vidiane Pinto Zineli<sup>2</sup>, Christiane de Fátima Colet<sup>3</sup>, Viviane Fereira de Melo<sup>4</sup>, Sthefany Schein Weber<sup>5</sup>, Flavia Alessandra da Silva Rader<sup>6</sup>, Isadora Giaretta<sup>7</sup>, Lenando Lovatto dos Santos<sup>8</sup>, Alana Thais Gisch Andres<sup>9</sup>

- <sup>1</sup> Trabalho desenvolvido pelo grupo de pesquisa PLAMEDIC/UNIJUÍ;.
- <sup>2</sup> Estudante do curso de Mestrado em Sistemas Ambientais e Sustentabilidade da UNIJUÍ;
- <sup>3</sup> Professora Orientadora da Unijuí;
- <sup>4</sup> Estudante do curso de Mestrado em Sistemas Ambientais e Sustentabilidade da UNIJUÍ;
- <sup>5</sup> Bolsista PIBIC Iniciação Científica;
- <sup>7</sup> Bolsista PIBIC Iniciação Científica;
- <sup>8</sup> Bolsista PIBIC Iniciação Científica;
- <sup>9</sup> Bolsista PIBIC Iniciação Científica;

## INTRODUÇÃO

Na produção agrícola há o desafio de aumentar a disponibilidade de alimentos e ao mesmo tempo reduzir o uso de agrotóxicos, "constantemente" relacionado a danos à saúde humana e ao meio ambiente. O uso de bioinsumos naturais derivados de plantas, como óleos essenciais, surgem como uma alternativa promissora para reduzir o emprego destas moléculas químicas, uma vez que são compostos derivados de plantas aromáticas (Braga *et al*, 2022).

O capim limão (*Cymbopogon flexuosus* (Stapf) ) é uma erva aromática, pertencente à família Poaceae, já muito utilizada em indústrias e que vem se destacando também pelo seu potencial efeito antioxidante e antimicrobiano, aliado à vantagem de que esses óleos essenciais geralmente são desprovidos de riscos genotóxicos a longo prazo (Marigowda *et al*, 2016). Atribui-se sua ação ao citral, componente encontrado em maior concentração no OE de *Cymbopogon flexuosus*, sendo uma mistura dos isômeros geranial e neral(Braga *et al*, 2022). Além disso, o gênero *Cymbopogon* é amplamente encontrado em diversos Biomas brasileiros, inclusive no Pampa Gaúcho (Hack, 2017).

O objetivo deste trabalho é abordar o uso de Óleo Essencial de Capim Limão (*Cymbopogon flexuosus*.) no controle de agentes potencialmente patogênicos que afetam culturas agrícolas, atendendo a ODS (Objetivos de Desenvolvimento Sustentável) de número 2 intitulada como "Fome Zero e Agricultura Sustentável" proposto pela Agenda 2030.





#### **METODOLOGIA**

Trata-se de uma revisão bibliográfica onde os dados foram obtidos através da base de dados PubMed, referente a artigos publicados em português e inglês, no período dos últimos dez anos (2014 a 2024). Para a revisão, utilizaram-se os seguintes descritores: capim limão (194); *Cymbopogon flexuosus*(348); óleos essenciais agricultura (31); nanoemulsão(20); Através da análise prévia de título e resumo, relacionando ao tema proposto, foram selecionados 4 artigos.

### RESULTADOS E DISCUSSÃO

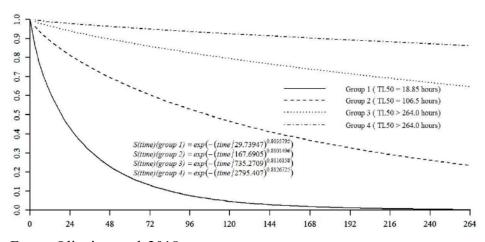
As doenças causadas por diversos microrganismos são capazes de subtrair a produtividade de grandes culturas. Para avaliar a atividade antimicrobiana do OE, Braga *et al*, 2022, realizaram três técnicas *in vitro*: difusão em ágar, Concentração Inibitória Mínima e Concentração Bactericida Mínima, comparando diferentes concentrações do OE(5 a 40 μL) à um controle negativo e um positivo (com antibiótico gentamicina na concentração de 20μg/mL) e verificando sua ação sobre quatro agentes potencialmente patogênicos no sistema produtivo.

**Tabela 1-** Zona de inibição de crescimento (mm) de bactérias com diferentes concentrações do OE de *Cymbopogon flexuosus*:

|                                   | Doses do OE $C$ . $flexuosus$ ( $\mu$ L) |          |          |          |          |          |  |
|-----------------------------------|------------------------------------------|----------|----------|----------|----------|----------|--|
| Agente patogênico                 | 5                                        | 10       | 15       | 20       | 30       | 40       |  |
| X.axonopodispv.<br>phaseolis      | 85.81 aA                                 | 85.03 aA | 85.02 aA | 86.83 aA | 85.98 aA | 90.00 aA |  |
| R.solanacearum                    | 82.43 aA                                 | 82.25 aA | 87.87 aA | 90.00 aA | 86.80 aA | 90.00 aA |  |
| P. carotovorum pv.carotovorum     | 68.98 bB                                 | 81.42 aA | 81.62 aA | 82.45 aA | 85.71 aA | 90.00 aA |  |
| Pseudomonas<br>syringae pv.tomato | 51.22 bB                                 | 58.89 Bb | 66.01 bB | 67.73 bB | 81.63 aA | 84.63 aA |  |

Fonte: Braga et al, 2022

Nota: \* Médias seguidas de mesma letra não diferem significativamente pelo teste de Scott-Knott a 5% de probabilidade


A Tabela 1 apresenta a zona de inibição de crescimento (mm) das bactérias perante a presença de diferentes doses do OE de Capim limão. A bactéria *X. axonopodis pv. phaseolis* 





conhecida por causar crestamento bacteriano em diversas culturas e *Ralstonia solanacearum*, popularmente conhecida como "murcha bacteriana", tiveram seu crescimento inibido com todas as dosagens analisadas. Já a *P. Carotovorum pv.carotovorum*, causadora da "Podridão Mole" em crucíferas, a zona de inibição de crescimento foi maior nas doses a partir de 10μL. Para as bactérias de *P. syringae pv.tomato*, responsável por causar a "mancha bacteriana", a inibição de crescimento ocorreu nas doses de 30μL e 40μL, apresentando maior resistência nos testes *in vitro*. O estudo comprovou a atividade antimicrobiana *in vitro* do óleo essencial em todas as bactérias supracitadas, demonstrando que há potencial de seu emprego na agricultura para controle de doenças.

Figura 1 - Curvas de sobrevivência de lagartas de *Spodoptera frugiperda* alimentadas com dieta artificial contendo diferentes concentrações de óleo essencial de *Cymbopogon flexuosus*:



Fonte: Oliveira et al, 2018.

Em relação a inseto pragas, na Figura 1, Oliveira *et al*, 2018, destaca ação do OE *Cymbopogon flexuosus* sobre a *Spodoptera frugiperda*, inseto polífago responsável por causar danos à diversas culturas. Geralmente são empregados inseticidas químicos sintéticos para seu controle ou utilizadas plantas geneticamente modificadas, o que também ocasiona riscos à saúde humana e ao meio ambiente. Neste estudo foi possível constatar que óleo essencial de *C. flexuosus* causou alta mortalidade em lagartas de *S. frugiperda*, indicando o citral como o monoterpenóide responsável pela ação inseticida, possivelmente atuando no sistema nervoso das lagartas.

Em sementes de soja armazenadas, Daronco *et al* 2015, após submetê-las a tratamento com OE, nas avaliações demonstradas pela tabela 2, constataram resultados estatisticamente





iguais comparado ao controle positivo, o qual utilizou fungicida químico a base de carboxina(200g/l) e tiram(200g/l). Ou seja, o óleo essencial de capim limão foi tão eficiente quanto um agroquímico comumente utilizado para tratamento de sementes.

**Tabela 2** - Rendimento de grãos (RG), Número de Plantas Iniciais (NPI), Rendimento Biológico Aparentev(RBA), Germinação (GERM) e Vigor (VIGOR):

| Tratamento        | RG(KG -1) | NPI(nº) | RBA(g) | GERM(%) | VIGOR(%) |
|-------------------|-----------|---------|--------|---------|----------|
| C.flexuosus 10%   | 3520a     | 39a     | 43a    | 72a     | 67a      |
| C.flexuosus 20%   | 3501a     | 37a     | 45a    | 71a     | 68a      |
| Controle Positivo | 3436a     | 41a     | 49a    | 74a     | 63a      |

Outro fator importante sobre os metabólitos secundários produzidos pelas plantas é que sua concentração pode variar, por diversos fatores, inclusive pelo modo de extração, que interfere também em sua eficiência já que muitas vezes esta é proporcional ao teor do composto (Bhatnagar, 2023). Para manter por mais tempo as propriedades do OE, a nanoemulsão, que consiste na mistura entre o óleo, água e surfactante não iônico, potencializa a atividade do OE perante seu alvo (Ferreira *et al*, 2022).

### **CONSIDERAÇÕES FINAIS**

Os óleos essenciais, portanto, são alternativas sustentáveis para o manejo de organismos potencialmente patogênicos dentro da agricultura e simultaneamente proporcionam maior equilíbrio ao ecossistema.

Pesquisas experimentais são pertinentes para explorar todos os benefícios com o emprego de OE no manejo agrícola, inclusive seu potencial alelopático para uso como herbicida.

O óleo essencial de capim limão (*Cymbopogon flexuosus*), através da grande concentração de citral, tem grande capacidade de ação antimicrobiana e de letalidade em insetos considerados pragas.

Palavras-chave: bioinsumos, controle biológico, propriedades bioativas

#### **AGRADECIMENTOS**

Á CAPES.





## REFERÊNCIAS BIBLIOGRÁFICAS

BHATNAGAR, A. Chemical constituents and biological activities of *Cymbopogon flexuosus* (Lemon Grass) Journal of Research in Chemistry; 4(2): 91-95. 2023.

BRAGA, R. DE O.; MARTINAZZO, A. P.; TEODORO, C. E. DE S.; Controle alternativo de bactérias fitopatogênicas com óleos essenciais de *Elionurus latiflorus* e *Cymbopogon flexuosus*. Ciência e Natureza, Santa Maria, v. 44, e25, 2022.

COSTA, K. A. D.; MOURA, R.; MILLEZI, A. F, Antimicrobial and antibiofilm activity of *Cymbopogon flexuosus* essential oil microemulsions1, Rev. Ceres, Viçosa, v. 66, n.5, p. 372-379, sep/oct, 2019.

DARONCO, M. V.; SCHNEIDER, A.; VIAU, COLET, C. F.; Avaliação da eficácia de óleos essenciais no tratamento de sementes de soja. Revista Ciência Agrícola, Rio Largo, v.13, nº1, p.49-58, 2015.

FERREIRA, M. L.; OLIVEIRA, J. P. M.; LIMA, T. P.; SOUSA, B. A.; ALMEIDA, R. A.; SEREJO, A. P. M.; MARINHO, S. C.; OLIVEIRA, A. C. S.; GOMES, P. R. B.; FILHO, V. E. M.; EVERTON, G. O.Desenvolvimento de nanoemulsão bioativa incorporada ao óleo essencial de Coleus aromaticus Benth(hortelã-grosso). Research, Society and Development, v. 11, n.2, e 18711223516, 2022.

HECK, R. M.; Plantas medicinais do Bioma Pampa no cuidado em saúde / Rita Maria Heck, Márcia Vaz Ribeiro, Rosa Lía Barbieri, editoras técnicas – Brasília, DF: Embrapa, 2017. 156p.

MARIGOWDA, V.; HEMALATHA, J.; ASHWINI, M.; SHIVAKAMESHWARI, M. N.; THARA, S. K. J.; Studies on antibacterial, antioxidant and anticancer activity using essential oil from Cymbopogon flexuosus (Stapf). International Journal of Advanced Research.4(12) p. 1324-1341, 2016.

OLIVEIRA, E. R.; ALVES, D. S.; CARVALHO, G. A.; DE OLIVEIRA, M. R. G; Toxicity of *Cymbopogon flexuosus* essential oil and citral for *Spodoptera frugiperda*. Revista Ciência e Agrotecnologia, Lavras, 42(4):408-419, Jul/Aug. 2018.