

26 A 29 DE OUTUBRO DE 2021

IJUÍ | SANTA ROSA | PANAMBI | TRÊS PASSOS

Evento: XXIX Seminário de Iniciação Científica

A CONTRIBUIÇÃO DO NITROGÊNIO E A DINÂMICA DE RELAÇÕES COM A PRODUTIVIDADE E QUALIDADE INDUSTRIAL DE GRÃOS DE AVEIA¹

THE CONTRIBUTION OF NITROGEN AND THE DYNAMICS OF RELATIONSHIPS WITH PRODUCTIVITY AND INDUSTRIAL QUALITY OF OATS

Lara Laís Schünemann², Lisa Brönstrup Heusner³, Natália Guiotto Zardin⁴, Natiane Carolina Ferrari Basso⁵, Juliana Aozane da Rosa⁶, José Antonio Gonzalez da Silva⁷

- ¹ Projeto de pesquisa desenvolvido na UNIJUÍ;
- ² Estudante do curso de Agronomia, bolsista PIBIC/CNPq;
- ³ Estudante do curso de Agronomia, bolsista PIBITI/CNPq;
- ⁴ Estudante do curso de Agronomia, bolsista PIBIC/CNPq;
- ⁵ Mestranda em Sistemas Ambientais e Sustentabilidade, UNIJUÍ:
- ⁶ Doutoranda em Modelagem Matemática e Computacional, UNIJUÍ;
- ⁷ Professor do curso de Agronomia, UNIJUÍ.

RESUMO

A magnitude de contribuição e de relações de variáveis de interesse pelo nitrogênio pode direcionar estratégias à indústria de alimentos. O objetivo do estudo é dimensionar e interpretar a contribuição e dinâmica de relações dos componentes da qualidade industrial da aveia com a produtividade de grãos e de indústria pelo estímulo do nitrogênio, na proposição de estratégias que promovam benefícios à indústria de alimentos. O estudo foi conduzido de 2015 a 2020 em Augusto Pestana, RS, Brasil, em delineamento de blocos casualizados com quatro repetições em fatorial 4x2 para doses de nitrogênio (0, 30, 60 e 120 kg ha⁻¹) e cultivares de aveia (Barbarasul e Brisasul) em sistema de sucessão soja/aveia. O incremento do nitrogênio promove maior alteração sobre a massa da cariopse e a produtividade de grãos e de indústria podem ser simultaneamente elevadas pelo aumento direto via massa de mil grãos e indireto pela massa de cariopse no sistema soja/aveia. A proposição de manejos na melhoria das características da produtividade de grãos e de indústria pelo nitrogênio é dependente dos sistemas de sucessão de alta e reduzida liberação de N-residual.

Palavras-chave: Avena sativa L. correlação e trilha. fertilizante, soja/aveia. sustentabilidade.

INTRODUÇÃO

A aveia branca dispõem de grãos de destaque na alimentação humana, fomentando uma gama de indústrias de processamento no beneficiamento de produtos alimentícios (Martinez et al., 2010; Silveira et al., 2016). Entre as tecnologias de manejo, a adubação com nitrogênio é essencial no desenvolvimento e elaboração de grãos de aveia, influenciando componentes da produtividade e da qualidade industrial (Takayama et al., 2006; Obour et al., 2018). A produtividade de grãos com espessura maior que 2 mm e o índice de descasque (massa de

CIÊNCIA, TECNOLOGIA E

26 A 29 DE OUTUBRO DE 2021

IJUÍ | SANTA ROSA | PANAMBI | TRÊS PASSOS

cariopse sobre a massa de grãos), são variáveis que definem a produtividade industrial de grãos de aveia (Arenhardt et al., 2015; Scremin et al., 2017). A análise de contribuição e relações dos componentes da produtividade industrial de grãos de aveia com a produtividade pelo estímulo do nitrogênio pode gerar informações buscando manejos mais eficientes que beneficiem a comercialização e o processamento. O objetivo do estudo é dimensionar e interpretar a contribuição e dinâmica de relações dos componentes da qualidade industrial da aveia com a produtividade de grãos e de indústria pelo estímulo do nitrogênio, na proposição de estratégias que promovam beneficios à indústria de alimentos.

METODOLOGIA

A pesquisa foi desenvolvida a campo, nos anos agrícolas de 2015 a 2020, no município de Augusto Pestana, RS. As semeaduras foram realizadas entre a primeira e a segunda semana do mês de junho com semeadora-adubadora para constituição das parcelas experimentais de 5 m². A densidade populacional foi de 400 sementes viáveis m². O delineamento experimental foi o de blocos casualizados com quatro repetições, seguindo um esquema fatorial 4 x 2 nas fontes de variação, Doses de N-fertilizante (0, 30, 60 e 120 kg ha⁻¹) com fonte ureia, e Cultivares de aveia (Barbarasul e Brisasul), respectivamente, em sistema de sucessão soja/aveia. Foram avaliados as variáveis produtividade de grãos (kg ha⁻¹), massa de mil grãos (MMG, g), massa do hectolitro (MH, kg hl.-1), número de grãos maiores que 2 mm (NG>2, n), massa de grãos (MG, g), massa da cariopse (MC, g) e, índice de descasque (ID, g g⁻¹). As variáveis principais foram produtividade de grãos (PG, kg ha⁻¹) e a produtividade de indústria (PI, kg ha⁻¹). Foi realizada análise de contribuição relativa pelo efeito do nitrogênio e a magnitude e sentido de correlações entre a produtividade de grãos e de indústria com os componentes da qualidade industrial de grãos aveia. Após foi realizada análise de trilha para detecção de efeitos diretos e indiretos destas relações.

RESULTADOS E DISCUSSÃO

Na Tabela 1, os valores médios e de contribuição relativa no sistema soja/aveia, indicam que há variáveis que apresentam significativa contribuição de alteração pelo efeito do nitrogênio, exceto a massa do hectolitro. Dentre estas variáveis, a maior sensibilidade de modificação foi na massa da cariopse, mostrando tendência de redução pelo maior uso do fertilizante. A massa de grãos também mostra relevante contribuição com redução pelo aumento do nutriente, embora na composição do índice de descasque a tendência de diminuição seja anulada. A massa de mil grãos também evidencia contribuição de diminuição pelo aumento das doses e o número de grãos maior que 2mm mostra elevação até o ponto de 60 kg ha⁻¹. Na dose mais elevada, o número de grãos maior que 2mm indica redução.

Tabela 1. Valores médios e contribuição relativa do nitrogênio sobre indicadores da qualidade industrial de grãos de aveia em sistema de cultivo soja/aveia.

26 A 29 DE OUTUBRO DE 2021

IJUÍ | SANTA ROSA | PANAMBI | TRÊS PASSOS

Variáveis		Dose	Contribu	Contribuição relativa								
variaveis	0	30	60	120	S.j	S.j (%)						
	(2015+2016+2017+2018+2019+2020)											
PG	2437	3091	3531	3449	-	-						
PI	989	1297	1492	1424	-	-						
MMG	32,39	33,24	26,55	26,33	37,88	16,65						
MH	48,70	49,09	49,06	45,19	2,67	1,10						
$NG_{>2}$	58	62	64	56	43,07	17,79						
MG	1,79	1,72	1,67	1,66	42,11	20,40						
MC	1,32	1,27	1,12	1,11	88,68	36,63						
ID	0,71	0,70	0,72	0,74	27,67	7,43						

PG= produtividade de grãos (kg ha-1); PI= produtividade industrial (kg ha-1); MMG= massa de mil grãos (g); MH= massa do hectolitro; NG>2= número de grãos maior que 2 mm; MG= massa de grãos (g); MC= massa da cariopse (g); ID= índice de descasque.

A Tabela 2, de correlação e trilha, a produtividade de grãos mostra correlação positiva com a massa de mil grãos, com forte efeito direto via produtividade de grãos na ausência e dose reduzida de nitrogênio. O aumento das doses de nitrogênio (60 e 120 kg ha⁻¹) promovem contribuição indireta positiva via massa da cariopse e indireta negativa via número de grãos maiores que 2 mm. Na análise entre a produtividade de grãos e índice de descasque a correlação negativa é observada nas condições de uso de nitrogênio, indicando que o aumento da cariopse não garante aumento da produtividade de grãos, e sim, da massa total de grãos.

Tabela 2. Correlação e trilha dos indicadores da qualidade industrial de grãos sobre a produtividade de grãos e de indústria de aveia no uso de nitrogênio em sistema soja/aveia.

VAR	EF	Doses de N (kg ha-1)				EF	Doses de N (kg ha-1)				
		0	30	60	120	-	0	30	60	120	
(2015+2016+2017+2018+2019+2020)											
MMG	r (PGxMMG)	0,73*	0,53*	0,50*	0,51*	r (PIxMMG)	0,27	0,45*	0,53*	0,63*	
	D: PG	0,99	0,99	0,35	0,39	D: PI	0,20	0,25	-0,44	0,48	
	I: MH	0,09	-0,13	0,22	-0,12	I: MH	-0,02	0,68	-0,15	0,22	
	I: NG>2	-0,10	-0,07	-0,54	-0,45	I: NG>2	-0,15	-0,40	0,65	0,57	
	I: MG	0,05	-0,15	-0,05	0,03	I: MG	0,06	-0,25	-0,25	-0,15	
	I: MC	-0,00	-0,15	0,33	0,65	I: MC	0,11	0,15	0,38	0,52	
	I: ID	-0,30	0,04	0,19	0,01	I: ID	0,05	0,00	0,34	0,01	
	r (PGxMH)	-0,14	0,13	0,25	0,14	r (PIxMH)	0,59*	-0,32*	-0,79*	-0,81*	
MH	D: PG	0,77	0,37	0,49	0,27	D: PI	-0,40	-0,95	-0,28	-0,48	
	I: MMG	0,05	-0,99	0,05	-0,18	I: MMG	0,08	-0,18	-0,04	-0,38	
	I: NG>2	-0,93	0,19	0,43	0,69	I: NG>2	-0,85	0,53	-0,20	-0,82	
	I: MG	0,39	0,39	0,03	-0,04	I: MG	0,99	0,32	0,03	0,34	
	I: MC	-0,01	0,12	-0,28	-0,87	I: MC	0,70	-0,07	-0,10	0,38	
	I: ID	-0,41	0,05	-0,47	0,27	I: ID	0,07	0,10	-0,20	0,15	
	r (PGxNG>2)	0,17	-0,08	-0,19	-0,11	r (PIxNG>2)	-0,57*	0,18	0,65*	0,34*	
	D: PG	0,95	-0,20	-0,79	-0,72	D: PI	0,85	-0,54	0,36	0,90	
	I: MMG	-0,18	0,99	0,12	0,25	I: MMG	-0,03	0,18	-0,09	0,30	
NG>2	I: MH	-0,75	-0,34	-0,27	-0,26	I: MH	0,37	0,94	0,15	0,48	
	I: MG	-0,38	-0,36	-0,06	0,01	I: MG	-0,99	-0,32	-0,11	-0,50	
	I: MC	0,04	-0,12	0,40	0,85	I: MC	-0,60	0,07	0,14	-0,66	
	I: ID	0,49	-0,05	0,41	-0,22	I: ID	-0,17	-0,10	0,17	-0,22	
	r (PGxMG)	-0,05	0,22	0,25	0,19	r (PIxMG)	0,75*	-0,12	0,13	0,12	
MG	D: PG	0,40	0,44	0,04	-0,04	D: PI	0,99	0,37	0,25	0,57	
	I: MMG	0,06	-0,95	-0,03	-0,10	I: MMG	0,10	-0,17	0,06	-0,13	
	I: MH	0,74	0,32	0,00	0,26	I: MH	-0,31	-0,83	-0,04	-0,49	
	I: NG>2	-0,89	0,17	0,29	0,63	I: NG>2	-0,79	0,47	-0,17	-0,79	
	I: MC	-0,01	0,16	-0,28	-0,83	I: MC	0,64	-0,10	-0,11	0,65	
	I: ID	-0,36	0,05	0,23	0,27	I: ID	0,12	0,11	0,13	0,27	
МС	r (PGxMC)	-0,05	-0,16	-0,09	-0,36	r (PIxMC)	0,71*	-0,52*	-0,61*	-0,03	
	D: PG	-0,01	0,40	-0,50	-0,99	D: PI	0,68	-0,24	-0,17	0,79	
	I: MMG	0,17	-0,87	-0,09	-0,23	I: MMG	0,03	-0,15	0,06	-0,31	
	I: MH	0,75	0,11	0,28	0,19	I: MH	-0,33	-0,29	-0,16	-0,43	
	I: NG>2	-0,93	0,06	0,63	0,56	I: NG>2	-0,83	0,16	-0,29	-0,75	
	I:MG	0,40	0,18	0,07	-0,04	I: MG	0,99	0,15	0,15	0,47	
	I: ID	-0,44	0,06	0,46	0,15	I: ID	0,17	0,13	0,20_	0,16	
Ю	r (PGxID)	0,04	-0,40*	-0,60*		r (PIxID)	0,41*	-0,37*	-0,87*	-0,19	
					0,49*						
	D: PG	-0,60	-0,11	-0,88	-0,29	D: PI	0,09	-0,22	-0,37	-0,30	
	I: MMG	0,64	-0,02	-0,02	-0,01	I: MMG	0,11	0,00	0,01	-0,01	
	I: MH	0,55	-0,17	0,26	-0,23	I: MH	-0,31	0,45	-0,15	0,43	
	I: NG>2	-0,77	-0,09	0,37	-0,53	I: NG>2	-0,78	-0,26	-0,17	0,66	
	I: MG	0,24	-0,22	-0,04	0,04	I: MG	0,77	-0,18	-0,08	-0,53	
	I: MC	-0,01	0,24	-0,27	0,55	I: MC	0,53	-0,14	-0,09	-0,43	
	Valor k	2,6e ⁻²	4,1e ⁻²	2,6e ⁻²	5,1e ⁻²	Valor k	2,8e ⁻²	0,1	4,9e ⁻²	4,5e-2	
	R ²	0,84	0,87	0,92	0,82	R ²	0,84	0,81	0,91	0,86	

VAR= variável; EF= efeito; PG= produtividade de grãos (kg ha-1); PI= produtividade industrial (kg ha-1); MMG= massa de mil grãos (g); MH= massa do hectolitro; NG>2= número de grãos maiores que 2 mm; MG= massa de grãos (g); MC= massa da cariopse (g); ID= indice de descasque; r = valor da correlação; D= contribuição direta; I= contribuição indireta; R²= coeficiente de determinação; k= coeficiente de linearização; * = Significativo a 5% de probabilidade de erro, respectivamente, pelo teste F.

CIÊNCIA, TECNOLOGIA E

26 A 29 DE OUTUBRO DE 2021

IJUÍ | SANTA ROSA | PANAMBI | TRÊS PASSOS

A produtividade industrial mostra correlação positiva com a massa de mil grãos nas distintas condições de adubação (Tabela 2). Esta correlação traz um efeito indireto positivo via massa da cariopse e, uma contribuição indireta com o número de grãos maiores que 2 mm, porém, com efeito negativo em reduzida dose de nitrogênio, e positiva em doses mais elevadas. Portanto, estas condições indicam que doses mais elevadas de N-fertilizante promovem acréscimos na massa de mil grãos, aumentando a massa da cariopse e a dimensão dos grãos, beneficiando a produtividade de indústria (WROBEL et al., 2016). Inclusive, a produtividade de indústria mostra correlação positiva com o número de grãos maiores que 2mm com as doses mais elevadas de nitrogênio, com contribuição mais efetiva direta pela produtividade de indústria e indireta pela massa do hectolitro. Informação importante, visto a inclusão destas variáveis na determinação da produtividade industrial de grãos de aveia. A produtividade de indústria mostra, na presença do nitrogênio, uma correlação negativa com a massa do hectolitro, principalmente via efeito direto da produtividade de indústria. De forma semelhante, a produtividade de indústria também mostra relação negativa com a massa de cariopse, principalmente via efeito direto pela produtividade de indústria e indireto pela massa do hectolitro e índice de descasque. A contribuição relativa da massa do hectolitro pelo uso do nitrogênio não se mostrou efetiva, porém, esta variável detém forte influência na determinação da massa da cariopse e da produtividade de indústria. Buerstmayr et al. (2007) relatam baixas ou inexistentes relações entre a massa do hectolitro e a produtividade de grãos de aveia,

CONSIDERAÇÕES FINAIS

O incremento do nitrogênio promove alteração sobre a massa da cariopse em sistema soja/aveia, com tendência de redução. A produtividade de grãos e de indústria podem ser simultaneamente elevadas pelo aumento direto via massa de mil grãos e indireto pela massa de cariopse.

resultado que corroboram aos resultados desta pesquisa. Além disso, mostrando altas correlações negativas com a produtividade de indústria (MANTAI et al., 2021). De forma simultânea no sistema soja/aveia, a produtividade de grãos e de indústria podem ser elevadas

pelo aumento direto da massa de mil grãos e indireto via massa de cariopse.

REFERÊNCIAS BIBLIOGRÁFICAS

ARENHARDT, E.G.; SILVA, J.A.G. da.; GEWEHR, E.; OLIVEIRA, A.C de.; BINELLO, M.O.; VALDIERO, A.C.; GZERGORCZICK, M.E.; LIMA, A.R.C de. The supply of nitrogen in wheat yield by year condition and succession system in southern Brazil. African Journal of **Agricultural Research,** v.10, n.48, p. 4322-4330, 2015.

BUERSTMAYR, H.; KRENN, N.; STEPHANB, U.; GRAUSGRUBERC, H.; ZECHNER, E. Agronomic performance and quality of oat (Avena sativa L.) genotypes of worldwide origin produced under Central European growing conditions. Field Crops Research, v.101, n.3, p. 343-351, 2007.

26 A 29 DE OUTUBRO DE 2021 | IJUÍ | SANTA ROSA | PANAMBI | TRÊS PASSOS

MANTAI, R.D.; SILVA, J.A.G. da.; CARVALHO, I.R.; LAUTENCHLEGER, F.; CARBONERA, R.; RASIA, L.A.; KRAISIG, A.; PANSERA, V.; ALESSI, O.; ROSA, J.A. da.; WARMBIER, E.; BASSO, N.C.F.; MATTER, E.M. Contribuição do nitrogênio na qualidade industrial de componentes do grão de aveia e a dinâmica das relações com a produtividade. **Australian Journal of Crop Science**, v.15, n. 3, p. 334–342, 2021.

MARTINEZ, M.F.; ARELOVICH, H.M.; WEHRHAHNE, L.N. Grain yield, nutrient content and lipid profile of oat genotypes grown in a semiarid environment. **Field Crops Research**, v.116, n. 1-2, p.92-100, 2010.

OBUR, A.; HOLMAN, J.D.; SCHLEGEL, A. Seeding rate and nitrogen application effects on spring oat and triticale forage. **Kansas Agricultural Experiment Station Research Reports**, v. 4, n.5, p.1-8, 2018.

SCREMIN, O.B.; SILVA, J.A.G.; MAMANN, A.T.W. DE.; MAROLLI, A.; MANTAI, R.D.; TRAUTMANN, A.P.B.; KRAISIG, A.R.; SCREMIN, A.H.; KRÜGER, C.A.M.B.; DORNELLES, E.F. Nitrogen and hydrogel combination in oat grains productivity. International **Journal of Development Research**, v.7, p. 13896-13903, 2017.

SILVEIRA, S.F.S.; HAWERROTH, M.C.; OLIVEIRA, D.C.S.; WOYANN, L.G.; ALMEIDA, H.C.F de.; LUZ, V.K da.; THUROW, L.; SILVA, R.M. da.; GUTKOSKI, L.C.; MAIA, L.C. da.; OLIVEIRA, A.C de. Heterosis and genetic parameters for grain quality in oat segregating populations. **Scientia Agricola**, v.73, p. 471-477, 2016.

TAKAYAMA, T.; ISHIKAWA, N.; TAYA, S. The effect to the protein concentration and flour quality of nitrogen fertilization at 10 days after heading in wheat. **Japan Agricultural Research Quarterly: JARQ, v.** 40, n.4, p. 291-297, 2006.

WROBEL, F.L.; NEUMANN, M.; LEÃO, G.F.M.; HORST, E.H.; UENO, R.K. Nitrogen doses under productivity and nutritional aspects of dual purpose wheat grains and straw. **Revista Acadêmica: Ciência Animal, v.** 14, p. 27-35, 2016.