DESENVOLVIMENTO DE UM MEDIDOR ELETRÔNICO DE ENERGIA ELÉTRICA TRIFÁSICO¹

Douglas de Castro Karnikowski², Gabriel Attuati³, Paulo Sérgio Sausen⁴, Heriberto Brill Nonemacher⁵, Mauricio de Campos⁶.

- ¹ Parte integrante do Projeto de pesquisa Implantação de um Lote Pioneiro de um Sistema de Monitoramento de Consumo, Parametrização e Diagnóstico da Rede Elétrica de Distribuição em BT Utilizando Tecnologia PLC (Power Line Communication) desenvolvido no Departamento de Ciências Exatas e Engenharias,
- ² Bolsista PROBITI/FAPERGS, aluno do curso de Engenharia Elétrica do Departamento de Ciências Exatas e Engenharias da Unijuí, integrante do Grupo de Automação Industrial e Controle.
- ³ Bolsista P&D Unijuí, aluno do Curso de Engenharia Elétrica do Departamento de Ciências Exatas e Engenharias, integrante do Grupo de Automação Industrial e Controle.
- ⁴ Professor do Departamento de Ciências Exatas e Engenharias, integrante do Grupo de Automação Industrial e Controle.
- ⁵ Bolsista PROBITI/FAPERGS, aluno do curso de Engenharia Elétrica do Departamento de Ciências Exatas e Engenharias da Unijuí, integrante do Grupo de Automação Industrial e Controle.
- ⁶ Professor do Departamento de Ciências Exatas e Engenharias, integrante do Grupo de Automação Industrial e Controle.

Resumo: A constante busca para aprimorar a qualidade do fornecimento de energia elétrica, provoca a necessidade da concepção de equipamentos capazes de medir as grandezas elétricas e de transmitir estas informações para um sistema centralizado. Assim surge o conceito das Redes Inteligentes (Smart Grids) e da utilização dos Medidores Inteligentes para viabilizar tal conceito. Desta forma, o presente trabalho visa contribuir neste processo, propondo o desenvolvimento de um medidor eletrônico de energia elétrica, com a comunicação Power Line Communication incorporada. Este medidor terá como principal finalidade possuir elevada exatidão com o menor custo possível, viabilizando economicamente sua implantação nas residências. O sistema é projetado para um sistema elétrico trifásico, sendo capaz de realizar a medição de consumo de energia ativa, reativa e aparente, tensão e corrente eficaz e fator de potência.

Palavras-Chave: Medição de grandezas elétricas; Redes Inteligentes; Medição Inteligente.

Devido à crescente busca para melhorar a qualidade no fornecimento de energia elétrica, vem surgindo a ideia de se incorporar novas tecnologias à rede de Energia Elétrica. Estas redes baseadas nestas tecnologias vem sendo chamadas de Redes Inteligentes, do inglês Smart Grids. A Rede Inteligente nada mais é do que a integração entre a infraestrutura do Sistema Elétrico de Potência (SEP) e a infraestrutura de comunicação, automação e computação. Para a implantação do conceito Smart Grid,

novos métodos de controle, automação e otimização das operações do SEP devem ser desenvolvidos [1].

Um dos avanços mais aguardados entre as novas tecnologias para a implantação das Redes Inteligentes é conhecido como smart metering em português medição inteligente. Este, consiste na utilização de medidores de energia elétrica que além de informar o consumo detalhado do consumidor, possam automatizar e monitorar o sistema elétrico. A utilização de tais medidores requer meios eficientes e práticos de transmissão de dados, que permitam a interação do consumidor com a concessionária. Uma possibilidade, é a transmissão das informações através da própria rede elétrica, mais comumente conhecida como Power Line Communication (PLC). Entre as muitas vantagens do PLC pode-se citar o fato que o mesmo já utiliza a infraestrutura existente, constituída essencialmente pela rede elétrica.

Neste contexto, a Agência Nacional de Energia Elétrica (Aneel) realizou a Audiência Pública nº 44/2010, dando início ao estudo da substituição dos medidores eletromecânicos de energia pelos medidores eletrônicos no grupo B (consumidores residencial e comercial em baixa tensão (BT)). Outro motivo para a implantação dos medidores eletrônicos é que a Aneel alterou a estrutura tarifária aplicada ao setor de distribuição de energia, onde é previsto a aplicação de tarifas diferenciadas por horários de consumo, e assim, está estrutura tarifária só entrará em vigor quando os medidores eletrônicos forem colocados em funcionamento.

Diante das oportunidades e dos desafios abordados anteriormente, o presente projeto de iniciação cientifica tem como principal objetivo o desenvolvimento de um sistema de monitoramento de consumo, parametrização e diagnóstico da rede elétrica de distribuição em BT integrado à tecnologia PLC. Neste artigo será apresentado o desenvolvimento de um Medidor Eletrônico de Energia Elétrica baseado em processadores digitais, deve-se ressaltar que este projeto esta previsto para ser desenvolvido em 24 meses, sendo aqui apresentado os resultados parciais do primeiro ano do projeto.

O sistema proposto para o Medidor de Energia Elétrica é ilustrado no diagrama de blocos da Figura 1. Esse sistema é formado pelos sensores e circuitos de aquisição dos sinais de corrente e tensão, de um microcontrolador MSP430F47197, da fabricante Texas Instruments, um módulo de display LCD (Liquid Crystal Display) de 16x2 para exibição das medições, uma comunicação bidirecional Infrared Data Association (IrDA) e uma comunicação serial para intercâmbio de informações entre o medidor e o modem PLC.

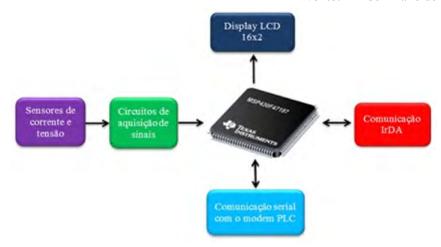


Figura 1: Diagrama de blocos do sistema proposto.

O sistema elétrico a ser analisado pelo medidor é do tipo trifásico, que é a forma mais comum de geração, transmissão e distribuição de energia. Além dos cálculos de medição de consumo de energia elétrica, potência ativa e reativa, fator de potência, variação de frequência, indicação do sentido do fluxo de potência e a configuração de tarifas diferenciadas.

O microcontrolador MSP430F47197 foi escolhido por apresentar conversão analógica para digital (A/D) precisa (16 bits) e 7 amostras simultâneas, ideais para análise de um sistema trifásico, também possui entrada de tensão negativa e positiva no conversor A/D que diminuiu os custos do circuito de aquisição. Além disso, apresenta um Encoder e Decoder IrDA e um Real-Time Clock interno com um calendário de 1901 até 2099 também necessários no projeto de um medidor. Os microcontrolador da família MSP430 também tem a característica de consumir pouca energia, graças aos diversos modos de funcionamento da CPU (Central Processing Unit) [2].

Para aquisição do sinal de tensão é empregado o divisor resistivo, devido ao baixo custo. Deve-se salientar que é necessário utilizar resistores de alta exatidão para não ocorrer erros na medição. Para a aquisição de corrente é utilizado um Transformador de Corrente (TC) fabricado pela empresa Toroid Brasil, mostrado na Figura 2. Os níveis de tensão e corrente são estipulados de acordo com a NBR14519.

Figura 2: TC fabricado pela Toroid Brasil.

Para obter do valor eficaz (RMS - do inglês Root Mean Square) da tensão (Vrms) é utilizada a equação 1, que é a raiz quadrada da média aritmética dos quadrados dos valores medidos. Para o cálculo da corrente eficaz é utilizado o mesmo método.

$$V_{rms} = \frac{\sqrt{\sum_{n=1}^{M} V(n)^2}}{M}$$
 (1)

Onde: M – número de amostras;

V(n) – amostra de tensão instantânea em "n";

n – instante de tempo discreto;

Para encontrar o valor da potência aparente (S) é realizado o produto da corrente eficaz pela tensão eficaz. Já a potência ativa (P) é obtida pela equação 2.

$$P = \frac{\sum_{n=1}^{M} V(n) \times I(n)}{M} \tag{2}$$

Onde: I(n) – amostra de corrente instantânea em "n";

A potência reativa (Q) é obtida pela relação do Triângulo de Potências [4], que reflete a relação entre as potências aparente, ativa e reativa com o ângulo do fator de potência. Assim, pode-se calcular a potencia reativa através da equação 3.

$$Q = \sqrt{S^2 - P^2} \tag{3}$$

O Fator de Potência (FP) pode ser calculado através da equação 4.

$$FP = \frac{P}{S} \tag{4}$$

A energia consumida (Ec) é determinada simplesmente pelo produto da potência ativa média (Pmed) pelo tempo, dada pela equação 5.

$$Ec = P_{med} \times tempo \tag{5}$$

O armazenamento das medições é realizado através da própria memória flash de 120K bytes do microcontrolador e de uma memória externa de 2K bytes.

Na Figura 3 é mostrado o protótipo construído conforme a disposição dos terminais para medição direta da NBR14519.

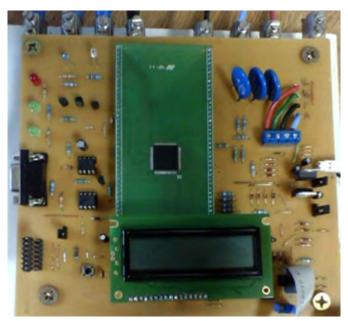


Figura 3: Foto do protótipo.

Para realizar o teste de confiabilidade dos valores medidos a partir do protótipo, foi utilizado um analisador de qualidade de energia produzido pela empresa DRANETZ© do modelo PowerGuide 4400. Assim obteve-se um erro médio de medição de 0,22% para a potência ativa. A medição de FP apresentou um erro de medição de 0,35%. As medições mostradas na Tabela 1 são de cargas lineares predominantemente resistivas.

VRPGPE

Protótipo Potência ativa	Drannetz Potência ativa	Protótipo Fator de Potência	Drannetz Fator de Potência
80,45W	80,26W	0,992	0,998
100,88W	100,67W	0,994	0,998
123,59W	123,32W	0,995	0,998
140,74W	140,45W	0,995	0,998
160,58W	160,32W	0,995	0,998
182,70W	182,34W	0,996	0,998
201,29W	201,11W	0,997	0,998

Tabela 1: Ensaios realizados com o protótipo comparados com as medições do DRANETZ©

A partir das medições da Tabela 1 observou-se que a exatidão do protótipo aumenta conforme aumentasse a carga, indicando que o protótipo possuir um maior erro de medição para pequenos sinais. Como mencionado na introdução os resultados aqui apresentados são parciais uma vez que o projeto é definido para ser concluído em 24 meses. Os resultados parciais, referente ao primeiro ano do projeto, comprovam a eficiência do protótipo desenvolvido. A partir do protótipo já é possível realizar a medição de consumo de energia ativa, reativa e aparente, tensão e corrente RMS, frequência e fator de potência. Todos os valores medidos, a partir do protótipo, foram comparados com medições realizadas a partir de um analisador de qualidade de energia DRANETZ© apresentando um erro de medição de energia ativa de 0,22% para cargas lineares, ficando de acordo com a NBR14519 para classe 1 (erro relativo de +/- 1%).

Como trabalhos futuros e continuidade do projeto deverá ser desenvolvido um protocolo de comunicação serial com o modem PLC, testes do erro de medição para outros tipos de cargas, o projeto de uma nova placa com componentes de encapsulamento SMD (Surface-Mount Device), o desenvolvimento do invólucro para medidores que atenda as normas brasileiras e da instalação de um lote de medidores nas residências.

Os autores agradecem ao apoio financeiro da CEEE e da Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS).

- [1] FALCÃO, D. M. Integração de tecnologias para viabilização da Smart Grid. Simpósio Brasileiro de Sistemas Elétricos. Belém. 2010.
- [2] PEREIRA, F. Microcontroladores MSP430 Teoria e Prática. Editora Érica Ltda. 2005.
- [3] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14519: Medidores eletrônicos de energia elétrica (estáticos) Especificação. Rio de Janeiro. 2011.
- [4] BOYLESTAD, R. L. Introdução à Análise de Circuitos Elétricos. Editora: Prentice-Hall. 10° Edição. 2004.

XX Seminário de Iniciação Científica II Mostra de Iniciação Científica Júnior XVII Jornada de Pesquisa II Seminário de Inovação e Tecnologia XIII Jornada de Extensão

Modalidade do trabalho: Relatório técnico-científico Evento: XX Seminário de Iniciação Científica