

Evento: XXVII Seminário de Iniciação Científica

QUALIDADE DA ÁGUA DE CONSUMO DE ESCOLAS MUNICIPAIS DE SANTO AUGUSTO-RS¹ QUALITY OF THE CONSUMPTION WATER OF SANTO AUGUSTO-RS MUNICIPAL SCHOOLS

Vanusa Almeida Floriano², Aline De Almeida Kunzler³, Denise Felippin De Lima Rocha⁴, Maria Fernanda Da Silveira Cáceres De Menezes⁵, Melissa Dos Santos Oliveira⁶

- ¹ Projeto de Iniciação Científica realizado no curso de Tecnologia em Alimentos do Instituto Federal Farroupilha- Santo Augusto
- ² Aluna de Graduação em Tecnologia em Alimentos do Instituto Federal Farroupilha- Campus Santo Augusto. Autor principal: vanusafloriano@gmail.com
- ³ Aluna de Graduação em Tecnologia em Alimentos do Instituto Federal Farroupilha- Campus Santo Augusto.Colaboradora: aliinekunzler@gmail.com
- ⁴ Técnica de Laboratório Eixo Produção Alimentícia do Instituto Federal Farroupilha- Campus Santo Augusto. Co-orientadora: denise.rocha@iffarroupilha.edu.br
- ⁵ Técnica de Laboratório Eixo Produção Alimentícia do Instituto Federal Farroupilha- Campus Santo Augusto. Co-orientadora: maria.menezes@iffarroupilha.edu.br
- ⁶ Professora Doutora do Eixo Produção Alimentícia , Orientadora, melissa.oliveira@iffarroupilha.edu.br

RESUMO

Este trabalho teve como objetivo avaliar as condições higiênico-sanitárias das águas destinadas ao consumo na rede municipal de ensino do município de Santo Augusto-RS. Foram realizadas análises de coliformes totais e termotolerantes, mesófilos, pH, dureza e alcalinidade de 24 amostras. Os resultados mostraram que as águas consumidas nas escolas encontram-se dentro dos padrões estabelecidos pela legislação para os parâmetros microbiológicos e físico-químicos.

INTRODUÇÃO

A água é um dos principais recursos naturais para os seres vivos, sendo essencial a sobrevivência e para o desenvolvimento de atividades sociais e econômicas (SHANNON et al., 2008). A garantia de qualidade da água deve integrar as dimensões política, econômica, social e ambiental a fim de melhorar as tecnologias de abastecimento e o cumprimento da legislação de água potável (CUNHA et al., 2016).

abastecimento de água potável é comprometido pelas atividades humanas, por isto é necessário monitorar a qualidade da água nas etapas de distribuição. A crescente escassez da água e a falta de infraestrutura para o abastecimento tem tornado a avaliação de qualidade da água de grande relevância (LERMONTOV et al., 2009).

Evento: XXVII Seminário de Iniciação Científica

Considerando a importância da qualidade da água de consumo para a população, desenvolveu-se o presente estudo para avaliar a potabilidade da água consumida em escolas de ensino infantil e fundamental do município de Santo Augusto-RS.

MATERIAIS E MÉTODOS

Coleta de amostras

As amostras de água foram coletadas em 06 escolas do município de Santo Augusto/RS, localizadas na zona urbana do município, que atendem aproximadamente 1400 pessoas, no período de setembro a dezembro de 2018. As amostras foram coletadas em dois pontos em cada Escola, totalizando 12 amostras para cada coleta, sendo o ponto 1: cozinha e o ponto 2: bebedor (BRASIL, 2013). As amostras foram coletadas em recipientes assépticos e acondicionadas em caixa de isopor com gelo e encaminhadas para os laboratórios de Bromatologia e Microbiologia Instituto Federal Farroupilha campus Santo Augusto.

Análises microbiológicas

A contagem de bactérias coliformes totais e termotolerantes foram realizadas utilizando-se a técnica do Número Mais Provável (NMP), com série de cinco tubos (BRASIL, 2013). Todos os tubos foram incubados em estufa a 35° C por 24-48 horas. Os resultados foram expressos como NMP/100 mL de amostra.

A contagem de mesófilos foi realizada por plaqueamento em profundidade usando o meio de cultura ágar padrão para contagem (PCA), esterilizado em autoclave a 121° C/15 min. Efetuou-se o plaqueamento em triplicata das amostras, sendo incubadas a 35° C/24-48 horas. Os resultados foram expressos em log UFC/mL de amostra (BRASIL, 2013).

Análises físico-químicas

A determinação do pH (IAL, 2008) foi realizada utilizando um potenciômetro modelo LUCA-210. A alcalinidade e a dureza total foram analisadas de acordo com os métodos do Manual Prático de Análise de Água elaborado pela Fundação Nacional de Saúde (BRASIL, 2013).

RESULTADOS E DISCUSSÃO

Os resultados das análises microbiológicas encontram-se na Tabela 1.

Tabela 1: Resultados das análises microbiológicas de coliformes totais, termotolerantes e mesófilos das amostras de água de consumo.

21 a 24 de outubro de 2019

XXVII Seminário de Iniciação Científica XXIV Jornada de Pesquisa XX Jornada de Extensão IX Seminário de Inovação e Tecnologia

Evento: XXVII Seminário de Iniciação Científica

Amostras	Coliformes totais NMP/100 mL Ausência em 100mL		Coliformes termotolerantes NMP/100 mL Ausência em 100mL		Mesófilos log UFC/mL	
Legislação*					2000	
5	Out./18	Nov./18	Out./18	Nov./18	Out./18	Nov./18
A1	<2	<2	<2	<2	4,4	3,5
A2	<2	<2	<2	<2	3,9	4,4
B1	<2	<2	<2	<2	0	3,6
B2	<2	<2	<2	<2	3	3,5
C1	<2	<2	<2	<2	0	3,8
C2	<2	<2	<2	<2	inc**	4,4
D1	<2	<2	<2	<2	3,6	0
D2	<2	<2	<2	<2	2,6	4,4
E1	<2	<2	<2	<2	0	3,6
E2	<2	<2	<2	<2	0	3,5
F1	<2	<2	<2	<2	0	3,3
F2	<2	<2	<2	<2	3,8	4,5

^{*} legislação: Portaria de Consolidação nº 5 de 28 de setembro de 2017.

A; B; C; D; E; F: Escolas; 1: Cozinha; 2: Bebedor.

A avaliação das condições higiênicas sanitárias das amostras A, B, C, D, E, F de ambos os pontos 1 e 2, nas duas coletas realizadas, apresentaram um padrão de qualidade satisfatório para coliformes totais e termotolerantes, pois apresentaram contagem <2 NMP/100mL, encontrando-se de acordo com o que preconiza a legislação. Durante a análise não houve a necessidade de realizar a etapa confirmatória devido a ausência no teste presuntivo (BRASIL, 2013).

A contagem de mesófilos apresentou crescimento em 17 amostras, com valores entre 2,6 a 4,5 log UFC/ mL, e uma amostra apresentou resultado incontável (amostra C2). No entanto, foi informado à escola e na segunda coleta realizada a incidência foi reduzida. Deste modo, verificou-se a eficiência do processo de limpeza das caixas e reservatórios de água (SILVA et al., 2010).

Na Tabela 2, seguem os resultados físico-químicos das amostras.

Tabela 2: Resultados das análises físico-químicas de amostras de água de consumo.

^{**} incontável.

Evento: XXVII Seminário de Iniciação Científica

	pH 6,0 a 9,5**		Alcalinidade (mg/L de CaCO ₂)		Dureza (mg/L de CaCO ₃)	
Amostras					Máx. 500*	
	Out./18	Nov./18	Out./18	Nov./18	Out./18	Nov./18
A1	7,92	7,71	620	660	17	93,5
A2	7,84	7,84	550	550	31,5	84,5
B1	7,85	8,1	610	565	90,5	22,5
B2	7,83	8,09	740	600	100	21
C1	7,2	7,19	455	460	54	52,5
C2	7,3	7,42	420	450	50	51
D1	7,39	7,81	470	490	56,5	57,5
D2	7,6	7,83	560	525	60,5	59,5
E1	6,5	6,71	450	410	61,5	51
E2	6,5	7,83	400	400	56,5	49,5
F1	7,24	7,51	1180	1160	80	71
F2	7,59	7,68	920	895	71	74

Legislação: *Portaria de Consolidação nº 5 de 28 de setembro de 2017 e **portaria nº2914/2011. A; B; C; D; E; F: Escolas; 1: Cozinha; 2: Bebedor.

Os valores de pH variaram entre 6,5 (amostra E1) e 8,1 (amostra B1) atendendo os parâmetros da legislação. O sabor da água pode ser alterado quando se encontram valores fora das faixas recomendadas ocorrendo comprometimento do gosto, aumento da corrosão e formação de incrustações. O ministério da Saúde prevê valores de pH da água aceitáveis para consumo humano situados entre 6,0 e 9,5 (BRASIL, 2011).

A alcalinidade das amostras analisadas tiveram uma variação de 400 a 1180 mg/L de CaCO3. Este parâmetro não é previsto na legislação mas é importante durante o processo de tratamento de água, pois é em função do seu teor que se estabelece a dosagem dos produtos químicos utilizados no tratamento. A dureza variou de 17 a 100 mg/L de CaCO3, todas as amostras apresentaram valores dentro do estabelecido pela legislação, onde o padrão de potabilidade estabelece o limite de 500 mg/L CaCO3.

Os resultados obtidos eram esperados, pois as escolas municipais de educação infantil e fundamental da zona urbana do município de Santo Augusto recebem água tratada pela CORSAN (Companhia Rio Grandense de Saneamento).

CONSIDERAÇÕES FINAIS

Evento: XXVII Seminário de Iniciação Científica

De acordo com os resultados obtidos nas análises de águas, os parâmetros microbiológicos e físico-químicos das amostras coletadas nas Escolas de Ensino Infantil e Fundamental da zona urbana do Município de Santo Augusto estão dentro dos padrões exigidos pela legislação vigente.

Palavras-chave: coliformes, pH, dureza, alcalinidade.

Keywords: Coliforms, pH, hardness, alkalinity.

BIBLIOGRAFIA

BRASIL. FUNASA (Fundação Nacional de Saúde). Manual Prático de Análise de Água. 4º edição, p.150, 2013.

BRASIL. Portaria n^{ϱ} . 2914/2011. Estabelece as responsabilidades e procedimentos relativos ao controle e vigilância da qualidade da água para consumo humano e seu padrão de potabilidade, e dá outras providências.

BRASIL. Portaria de Consolidação n° 5 de 28 de setembro de 2017. ANEXO XX. DO CONTROLE E DA VIGILÂNCIA DA QUALIDADE DA ÁGUA PARA CONSUMO HUMANO E SEU PADRÃO DE POTABILIDADE (Origem: PRT MS/GM 2914/2011).

SHANNON et al. Science and technology for water purification in the coming decades. **Nature.** v.452, p. 301-310, 2008.

CUNHA et al. Land use influence on raw surface water quality and treatment costs for drinking supply in São Paulo State (Brazil). **Ecological Engineering**. V. 94, p. 516–524, 2016.

LERMONTOV et al. River quality analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil. **Ecological Indicators**. V. 9, p. 1188–1197, 2009.

SILVA, N.; JUNQUEIRA, V. C. A.; SILVEIRA, N. F. A. Manual de métodos de análise microbiológica de alimentos. São Paulo: Livraria Varela, 536p. 2007.

IAL, Instituto Adolfo Lutz. **Métodos físico-químicos para análise de alimentos**. 1ª edição digital. São Paulo, 1200p. 2008.

